Extensive structure activity relationship (SAR) studies focused on the desferrithiocin [DFT, (S)-4,5-dihydro-2-(3-hydroxy-2-pyridinyl)-4-methyl-4-thiazolecarboxylic acid] pharmacophore have led to three different DFT analogs being evaluated clinically for the treatment of iron overload diseases, for example, thalassemia. The SAR work revealed that the lipophilicity of a ligand, as determined by its partition between octanol and water, logP(app), could have a profound effect on the drug's iron clearing efficiency (ICE), organ distribution, and toxicity profile. While within a given structural family the more lipophilic a chelator the better the ICE, unfortunately, the more lipophilic ligands are often more toxic.
View Article and Find Full Text PDFThe successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed.
View Article and Find Full Text PDFDesferrithiocin (DFT, 1) is a very efficient iron chelator when given orally. However, it is severely nephrotoxic. Structure-activity studies with 1 demonstrated that removal of the aromatic nitrogen to provide desazadesferrithiocin (DADFT, 2) and introduction of either a hydroxyl group or a polyether fragment onto the aromatic ring resulted in orally active iron chelators that were much less toxic than 1.
View Article and Find Full Text PDFThe current solution to iron-mediated damage in transfusional iron overload disorders is decorporation of excess unmanaged metal, chelation therapy. The clinical development of the tridentate chelator deferitrin (1, Table 1) was halted due to nephrotoxicity. It was then shown by replacing the 4'-(HO) of 1 with a 3,6,9-trioxadecyloxy group, the nephrotoxicity could be ameliorated.
View Article and Find Full Text PDF(S)-2-(2,4-Dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid (2) was abandoned in clinical trials as an iron chelator for the treatment of iron overload disease because of its nephrotoxicity. However, subsequent investigations revealed that replacing the 4'-(HO) of 2 with a 3,6,9-trioxadecyloxy group, ligand 4, increased iron clearing efficiency (ICE) and ameliorated the renal toxicity of 2. This compelled a closer look at additional polyether analogues, the subject of this work.
View Article and Find Full Text PDFA new target strategy in the development of bacterial vaccines, the induction of antibodies to microbial outer membrane ferrisiderophore complexes, is explored. A vibriobactin (VIB) analogue, with a thiol tether, 1-(2,3-dihydroxybenzoyl)-5,9-bis[[(4S,5R)-2-(2,3-dihydroxyphenyl)-4,5-dihydro-5-methyl-4-oxazolyl]carbonyl]-14-(3-mercaptopropanoyl)-1,5,9,14-tetraazatetradecane, was synthesized and linked to ovalbumin (OVA) and bovine serum albumin (BSA). The antigenicity of the VIB microbial iron chelator conjugates and their iron complexes was evaluated.
View Article and Find Full Text PDFThe syntheses of a series of 4'-O-alkylated ( S)-4,5-dihydro-2-(2,4-dihydroxyphenyl)-4-methyl-4-thiazole-carboxylic acid and 5'-O-alkylated ( S)-4,5-dihydro-2-(2,5-dihydroxyphenyl)-4-methyl-4-thiazolecarboxylic acid ligands are described. Their partition between octanol and water, log P(app), is determined, along with their iron-clearing efficiency (ICE) in both non-iron-overloaded, bile duct-cannulated rodents and in iron-overloaded primates. The ligand-promoted biliary ferrokinetics in rats are described for each of the chelators.
View Article and Find Full Text PDFA series of iron-clearing efficiencies (ICEs), ferrokinetics, and toxicity studies for ( S)-2-(2,4-dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid (deferitrin, 1), ( S)-4,5-dihydro-2-[2-hydroxy-4-(3,6,9-trioxadecyloxy)phenyl]-4-methyl-4-thiazolecarboxylic acid ( 2), and (S)-4,5-dihydro-2-[2-hydroxy-3-(3,6,9-trioxadecyloxy)phenyl]-4-methyl-4-thiazolecarboxylic acid ( 3) are reported. The ICEs in rodents are shown to be dose-dependent and saturable for ligands 2 and 3 and superior to 1. Both polyether analogues in subcutaneous (sc) versus oral (po) administration in rodents and primates demonstrated excellent bioavailability.
View Article and Find Full Text PDFA series of iron chelators, three (S)-4,5-dihydro-2-(2-hydroxyphenyl)-4-methyl-4-thiazolecarboxylic acid (DADFT) and three (S)-4,5-dihydro-2-(2-hydroxyphenyl)-4-thiazolecarboxylic acid (DADMDFT) analogues are synthesized and assessed for their lipophilicity (log Papp), iron-clearing efficiency (ICE) in rodents and iron-loaded primates (Cebus apella), toxicity in rodents, and organ distribution in rodents. The results lead to a number of generalizations useful in chelator design strategies. In rodents, while log Papp is a good predictor of a chelator's ICE, chelator liver concentration is a better tool.
View Article and Find Full Text PDFPrevious studies revealed that within a family of ligands the more lipophilic chelators have better iron-clearing efficiency. The larger the log P(app) value of the compound, the better the iron-clearing efficiency. What is also clear from the data is that although the relative effects of log P(app) changes are essentially the same through different families, there are differences in absolute value between families.
View Article and Find Full Text PDFThe utility of polyamines as vectors for the intracellular transport of iron chelators is further described. Consistent with earlier results with polyamine analogues, these studies underscore the importance of charge in the design of polyamine-vectored chelators. Four polyamine conjugates are synthesized, two of terephthalic acid [N(1)-(4-carboxy)benzoylspermine (7) and its methyl ester (6)] and two of (S)-2-(2,4-dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid [(S)-4'-(HO)-DADFT] [(S)-4,5-dihydro-2-[2-hydroxy-4-(12-amino-5,9-diazadodecyl-oxy)phenyl]-4-methyl-4-thiazolecarboxylic acid (10) and its ethyl ester (9)].
View Article and Find Full Text PDFExploitation of the polyamine backbone as a vector for intracellular transport of various pharmacophores has focused largely on fixing the cargo molecule to one of the nitrogens in the linear chain. This communication describes the assembly of a model aminopolyamine analogue, 6-amino-N(1),N(12)-diethylspermine, and its biological properties. This amino polyamine presents an additional site of attachment for cargo molecules, reduces cell growth, and achieves cellular concentrations that are higher than those of N(1),N(12)-diethylspermine.
View Article and Find Full Text PDFAltering the lipophilicity (log P(app)) of desferrithiocin analogues can change the organ distribution of the chelators and lead to enhanced iron clearance. For example, alkylation of (S)-2-(2,4-dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid [(S)-4'-(HO)-DADFT] and its analogues to more lipophilic compounds, such as (S)-4,5-dihydro-2-(2-hydroxy-4-methoxyphenyl)-4-methyl-4-thiazolecarboxylic acid [(S)-4'-(CH3O)-DADFT], provides ligands that achieved between a 3- and 8-fold increase in chelator concentrations in the heart, liver, and pancreas (the organs most at risk in iron-overload disease) of treated rodents. The 4'-O-methylated compounds are demethylated to their hydroxylated counterparts in rodents; furthermore, this O-demethylation takes place in both rodent and human liver microsomes.
View Article and Find Full Text PDFThe current study demonstrates unequivocally that polyamines can serve as vectors for the intracellular delivery of the bidentate chelator 1,2-dimethyl-3-hydroxypyridin-4-one (L1). The polyamine-hydroxypyridinone conjugate 1-(12-amino-4,9-diazadodecyl)-2-methyl-3-hydroxy-4(1H)-pyridinone is assembled from spermine and 3-O-benzylmaltol. The conjugate is shown to form a 3:1 complex with Fe(III) and to be taken up by the polyamine transporter 1900-fold against a concentration gradient.
View Article and Find Full Text PDFFor patients who require lifelong blood transfusions, there is no efficient means, unless chelation therapy is employed, for elimination of excess iron. Alternatives to desferrioxamine, the currently accepted treatment for transfusional iron overload, are being investigated. The current article focuses on an enantiomeric pair of analogs of desferrithiocin, (+)-(S)- and (-)-(R)-2-(2,4-dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid (4'-hydroxydesazadesferrithiocin).
View Article and Find Full Text PDFThe impact of altering the octanol-water partition properties (log P) of analogues of desazadesferrithiocin, (S)-4,5-dihydro-2-(2-hydroxyphenyl)-4-methyl-4-thiazolecarboxylic acid, on the ligands' iron clearing properties is described. Increasing chelator lipophilicity can both substantially augment iron clearing efficiency in Cebus apella primates as well as alter the mode of iron excretion, favoring fecal over urinary output. The complications of iron overload are often associated with the metal's interaction with hydrogen peroxide, generating hydroxyl radicals (Fenton chemistry) and, ultimately, other related deleterious species.
View Article and Find Full Text PDFDesferrithiocin, a natural product iron chelator (siderophore), offers an excellent platform from which to construct orally active iron chelators which have a good therapeutic window. A systematic structure-activity study on desferrithiocin identified the structural fragments necessary for the compound's oral iron-clearing activity. There are strict requirements regarding the distance between the ligating centers; they cannot be altered without loss of efficacy.
View Article and Find Full Text PDFTraditional thinking has been that hexacoordinate Fe(III) ligands are more effective at preventing iron's interactions with reactive oxygen species, most particularly the Fe(II)-mediated reduction of hydrogen peroxide to the hydroxyl radical (i.e., Fenton chemistry), than are ligands of lower denticity.
View Article and Find Full Text PDF