Arterioscler Thromb Vasc Biol
July 2014
Objective: Collateral vessel formation can functionally compensate for obstructive vascular lesions in patients with atherosclerosis. Neovascularization processes are triggered by fluid shear stress, hypoxia, growth factors, chemokines, proteases, and inflammation, as well as reactive oxygen species, in response to ischemia. Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein that regulates focal adhesion turnover and vascular smooth muscle cell migration and modifies extracellular matrix composition.
View Article and Find Full Text PDFPolymerase-δ interacting protein 2 (Poldip2) is an understudied protein, originally described as a binding partner of polymerase delta and proliferating cell nuclear antigen (PCNA). Numerous roles for Poldip2 have been proposed, including mitochondrial elongation, DNA replication/repair and ROS production via Nox4. In this study, we have identified a novel role for Poldip2 in regulating the cell cycle.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2013
Objective: On the basis of previous evidence that polymerase delta interacting protein 2 (Poldip2) increases reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) activity in vascular smooth muscle cells, we hypothesized that in vivo knockdown of Poldip2 would inhibit reactive oxygen species production and alter vascular function.
Approach And Results: Because homozygous Poldip2 deletion is lethal, Poldip2(+/-) mice were used. Poldip2 mRNA and protein levels were reduced by ≈50% in Poldip2(+/-) aorta, with no change in p22phox, Nox1, Nox2, and Nox4 mRNAs.
Am J Physiol Heart Circ Physiol
September 2013
Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation.
View Article and Find Full Text PDF