Publications by authors named "James S Kinsey-Jones"

Objective: The G-protein coupled receptor family C group 6 member A (GPRC6A) is activated by proteinogenic amino acids and may sense amino acids in the gastrointestinal tract and the brain. The study investigated whether GPRC6A was necessary for the effects of low- and high-protein diets on body weight and food intake in mice.

Methods: The role of GPRC6A in mediating the effects of a low-protein diet on body weight was investigated in GPRC6a knockout (GPRC6a-KO) and wild-type (WT) mice fed a control diet (18% protein) or a low-protein diet (6% protein) for 9 days.

View Article and Find Full Text PDF

Kisspeptin is a hypothalamic peptide hormone that plays a pivotal role in pubertal onset and reproductive function. Previous studies have examined hypothalamic kisspeptin mRNA expression, either through in situ hybridisation or real-time RT-PCR, as a means quantifying kisspeptin gene expression. However, mRNA expression levels are not always reflected in levels of the translated protein.

View Article and Find Full Text PDF

To investigate whether the advancement of puberty in response to high-fat diet (HFD) results from a concomitant increase in LH pulse frequency and kisspeptin (Kiss1) and neurokinin B (NKB) signaling in the hypothalamus, blood samples were collected on postnatal day (pnd) 28, 32, or 36 for LH measurement and vaginal opening monitored as a marker of puberty in female rats fed with HFD or standard chow from weaning. Quantitative RT-PCR was used to determine Kiss1 and kisspeptin receptor (Kiss1r) mRNA levels in brain punches of the medial preoptic area and the arcuate nucleus (ARC), and NKB and NKB receptor (NK3R) mRNA levels in the ARC. There was a gradual increase in LH pulse frequency from pnd 28, reaching significance by pnd 36 in control diet-fed rats.

View Article and Find Full Text PDF

Animal models have enabled investigation of the complex mechanisms underlying energy homeostasis and, therefore, the development of antiobesity drugs.

View Article and Find Full Text PDF

Neurokinin B (NKB) and its receptor (neurokinin-3 receptor) are coexpressed with kisspeptin and dynorphin A (Dyn) within neurons of the hypothalamic arcuate nucleus, the suggested site of the GnRH pulse generator. It is thought that these neuropeptides interact to regulate gonadotropin secretion. Using the ovariectomized (OVX) and OVX 17β-estradiol-replaced rat models, we have carried out a series of in vivo neuropharmacological and electrophysiological experiments to elucidate the hierarchy between the kisspeptin, NKB, and Dyn signaling systems.

View Article and Find Full Text PDF

Stress exerts profound inhibitory effects on reproductive function by suppressing the pulsatile release of GnRH and therefore LH. Although the mechanisms by which stressors disrupt the hypothalamic GnRH pulse generator remain to be fully elucidated, numerous studies have implicated the amygdala, especially its medial (MeA) and central nuclei (CeA), as key modulators of the neuroendocrine response to stress. In the present study, we investigated the roles of the MeA and CeA in stress-induced suppression of LH pulses.

View Article and Find Full Text PDF

Background: Kisspeptin and its G protein-coupled receptor (GPR) 54 are essential for activation of the hypothalamo-pituitary-gonadal axis. In the rat, the kisspeptin neurons critical for gonadotropin secretion are located in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei. As the ARC is known to be the site of the gonadotropin-releasing hormone (GnRH) pulse generator we explored whether kisspeptin-GPR54 signalling in the ARC regulates GnRH pulses.

View Article and Find Full Text PDF

Kisspeptins are extraordinarily potent in stimulating gonadotropic hormone secretion via an action on the hypothalamic GnRH neural system. Because the physiological frequency of the GnRH pulse generator is a critical component of the control system that governs reproductive processes, the aim of this study was to examine the effect of kisspeptin-10 on pulsatile LH secretion and on the electrophysiological manifestation of GnRH pulse generator activity to determine frequency modulatory effects. Adult Sprague Dawley rats were ovariectomized and chronically implanted with electrodes in the arcuate nucleus to record the characteristic increases in hypothalamic multiunit electrical activity volleys coincident with the initiation of each LH pulse measured in peripheral blood and/or indwelling cardiac catheters for the collection of blood samples (25 microl) every 5 min for 6-7 h for the measurement of LH.

View Article and Find Full Text PDF

Corticotrophin-releasing factor (CRF) released during stress has been implicated in the suppression of the hypothalamo-pituitary-gonadal (HPG) axis, especially the gonadotrophin-releasing hormone (GnRH) pulse generator, the central neural regulator of pituitary LH and FSH secretion, resulting in reproductive dysfunction. The gonadal steroid 17beta-oestradiol (E2) has been shown to enhance CRF- and stress-induced suppression of pulsatile LH secretion. In the present study, we investigated the potential direct action of CRF on GnRH neurones by using GT1-7 cells, an established GnRH cell line.

View Article and Find Full Text PDF