Publications by authors named "James S Ireland"

A unique microarray-based method for determining the extent of DNA methylation has been developed. It relies on a selective enrichment of the regions to be assayed by target amplification by capture and ligation (mTACL). The assay is quantitatively accurate, relatively precise, and lends itself to high-throughput determination using nanogram amounts of DNA.

View Article and Find Full Text PDF

Although genomewide association studies have successfully identified associations of many common single-nucleotide polymorphisms (SNPs) with common diseases, the SNPs implicated so far account for only a small proportion of the genetic variability of tested diseases. It has been suggested that common diseases may often be caused by rare alleles missed by genomewide association studies. To identify these rare alleles we need high-throughput, high-accuracy resequencing technologies.

View Article and Find Full Text PDF

Mismatch repair detection (MRD) was used to screen 93 matched tumor-normal sample pairs and 22 cell lines for somatic mutations in 30 cancer relevant genes. Using a starting amount of only 150 ng of genomic DNA, we screened 102 kb of sequence for somatic mutations in colon and breast cancer. A total of 152 somatic mutations were discovered, encompassing previously reported mutations, such as BRAF V600E and KRAS G12S, G12V, and G13D, as well as novel mutations, including some in genes in which somatic mutations have not previously been reported, such as MAP2K1 and MAP2K2.

View Article and Find Full Text PDF

Association studies hold great promise for the elucidation of the genetic basis of diseases. Studies based on functional single nucleotide polymorphisms (SNPs) or on linkage disequilibrium (LD) represent two main types of designs. LD-based association studies can be comprehensive for common causative variants, but they perform poorly for rare alleles.

View Article and Find Full Text PDF