Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of responses to novel epitopes. To examine the contribution of circulating antibodies to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited.
View Article and Find Full Text PDFAntibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of responses to novel epitopes. To examine the contribution of circulating antibody to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited.
View Article and Find Full Text PDFAntigenic drift, the gradual accumulation of amino acid substitutions in the influenza virus hemagglutinin (HA) receptor protein, enables viral immune evasion. Antibodies (Abs) specific for the drift-resistant HA stem region are a promising universal influenza vaccine target. Although anti-stem Abs are not believed to block viral attachment, here we show that complement component 1q (C1q), a 460-kilodalton protein with six Ab Fc-binding domains, confers attachment inhibition to anti-stem Abs and enhances their fusion and neuraminidase inhibition.
View Article and Find Full Text PDFTissue-resident memory (T) CD8 T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of T differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8 T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote T differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues.
View Article and Find Full Text PDFSuccessful direct MHC class I Ag presentation is dependent on the protein degradation machinery of the cell to generate antigenic peptides that can be loaded onto MHC class I molecules for surveillance by CD8 T cells of the immune system. Most often this process involves the ubiquitin (Ub)-proteasome system; however, other Ub-like proteins have also been implicated in protein degradation and direct Ag presentation. In this article, we examine the role of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) in direct Ag presentation in mouse cells.
View Article and Find Full Text PDFHuman antibody-based immunity to influenza A virus is limited by antigenic drift resulting from amino acid substitutions in the hemagglutinin (HA) head domain. Glycan addition can cause large antigenic changes but is limited by fitness costs to viral replication. Here, we report that glycans are added to H1 and H3 HAs at discrete 5-to-7-year intervals, until they reach a functional glycan limit, after which glycans are swapped at approximately 2-fold-longer intervals.
View Article and Find Full Text PDFAntibodies and cytotoxic T cells represent 2 arms of host defense against pathogens. We hypothesized that vaccines that induce both high-magnitude CD8+ T cell responses and antibody responses might confer enhanced protection against HIV. To test this hypothesis, we immunized 3 groups of nonhuman primates: (a) Group 1, which includes sequential immunization regimen involving heterologous viral vectors (HVVs) comprising vesicular stomatitis virus, vaccinia virus, and adenovirus serotype 5-expressing SIVmac239 Gag; (b) Group 2, which includes immunization with a clade C HIV-1 envelope (Env) gp140 protein adjuvanted with nanoparticles containing a TLR7/8 agonist (3M-052); and (c) Group 3, which includes a combination of both regimens.
View Article and Find Full Text PDFThe MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression.
View Article and Find Full Text PDFBroadly neutralizing antibodies (Abs) that bind the influenza virus hemagglutinin (HA) stem may enable universal influenza vaccination. Here, we show that anti-stem Abs sterically inhibit viral neuraminidase (NA) activity against large substrates, with activity inversely proportional to the length of the fibrous NA stalk that supports the enzymatic domain. By modulating NA stalk length in recombinant IAVs, we show that anti-stem Abs inhibit virus release from infected cells by blocking NA, accounting for their in vitro neutralization activity.
View Article and Find Full Text PDFCD8 T cell immunosurveillance is based on recognizing oligopeptides presented by MHC class I molecules. Despite decades of study, the importance of protein ubiquitylation to peptide generation remains uncertain. In this study, we examined the ability of MLN7243, a recently described ubiquitin-activating enzyme E1 inhibitor, to block overall cytosolic peptide generation and generation of specific peptides from vaccinia- and influenza A virus-encoded proteins.
View Article and Find Full Text PDFImmunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain.
View Article and Find Full Text PDFInfluenza A virus gene segment 7 encodes two proteins: the M1 protein translated from unspliced mRNA and the M2 protein produced by mRNA splicing and largely encoded by the M1 +1 reading frame. To better understand the generation of defective ribosomal products relevant to MHC class I Ag presentation, we engineered influenza A virus gene segment 7 to encode the model H-2 K(b) class I peptide ligand SIINFEKL at the M2 protein C terminus. Remarkably, after treating virus-infected cells with the RNA splicing inhibitor spliceostatin A to prevent M2 mRNA generation, K(b)-SIINFEKL complexes were still presented on the cell surface at levels ≤60% of untreated cells.
View Article and Find Full Text PDFUnlabelled: Antibody (Ab) affinity maturation enables an individual to maintain immunity to an increasing number of pathogens within the limits of a total Ig production threshold. A better understanding of this process is critical for designing vaccines that generate optimal Ab responses to pathogens. Our study describes a simple flow-cytometric method that enumerates virus-specific germinal center (GC) B cells as well as their AC50, a measure of Ab avidity, defined as the antigen concentration required to detect 50% of specific B cells.
View Article and Find Full Text PDFGreen fluorescent protein (GFP) and other fluorescent proteins are essential tools for biological research. When fused to peptides or proteins as a reporter, GFP enables localization and quantitation of gene products in otherwise unmanipulated live cells or organisms. We previously reported that a sizable fraction of nascent GFP is post-translationally converted into a 20-kDa Triton X-100-insoluble proteasome substrate (Qian, S.
View Article and Find Full Text PDFHuman influenza A virus (IAV) vaccination is limited by "antigenic drift," rapid antibody-driven escape reflecting amino acid substitutions in the globular domain of hemagglutinin (HA), the viral attachment protein. To better understand drift, we used anti-hemagglutinin monoclonal Abs (mAbs) to sequentially select IAV escape mutants. Twelve selection steps, each resulting in a single amino acid substitution in the hemagglutinin globular domain, were required to eliminate antigenicity defined by monoclonal or polyclonal Abs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2012
Sensitivity is essential in CD8+ T-cell killing of virus-infected cells and tumor cells. Although the affinity of the T-cell receptor (TCR) for antigen is relatively low, the avidity of T cell-antigen-presenting cell interactions is greatly enhanced by increasing the valence of the interaction. It is known that TCRs cluster into protein islands after engaging their cognate antigen (peptides bound to MHC molecules).
View Article and Find Full Text PDFTo better understand the generation of MHC class I-associated peptides, we used a model antigenic protein whose proteasome-mediated degradation is rapidly and reversibly controlled by Shield-1, a cell-permeant drug. When expressed from a stably transfected gene, the efficiency of antigen presentation is ~2%, that is, one cell-surface MHC class I-peptide complex is generated for every 50 folded source proteins degraded upon Shield-1 withdrawal. By contrast, when the same protein is expressed by vaccinia virus, its antigen presentation efficiency is reduced ~10-fold to values similar to those reported for other vaccinia virus-encoded model antigens.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (ARSs) are critical components of protein translation, providing ribosomes with aminoacyl-tRNAs. In return, ribosomes release uncharged tRNAs as ARS substrates. Here, we show that tRNA deacylation can be uncoupled from protein synthesis in an amino acid specific manner.
View Article and Find Full Text PDFSurprisingly little is known about the interaction of human blood mononuclear cells with viruses. Here, we show that monocytes are the predominant cell type infected when peripheral blood mononuclear cells are exposed to viruses ex vivo. Remarkably, infection with vesicular stomatitis virus, vaccinia virus, and a variety of influenza A viruses (including circulating swine-origin virus) induces monocytes to differentiate within 18 hours into CD16(-)CD83(+) mature dendritic cells with enhanced capacity to activate T cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2011
Here, we address the question of why the influenza A virus hemagglutinin (HA) does not escape immunity by hyperglycosylation. Uniquely among dozens of monoclonal antibodies specific for A/Puerto Rico/8/34, escape from H28-A2 neutralization requires substitutions introducing N-linked glycosylation at residue 131 or 144 in the globular domain. This escape decreases viral binding to cellular receptors, which must be compensated for by additional substitutions in HA or neuraminidase that enable viral replication.
View Article and Find Full Text PDFDrugs inhibiting the influenza A virus (IAV) neuraminidase (NA) are the cornerstone of anti-IAV chemotherapy and prophylaxis in man. Drug-resistant mutations in NA arise frequently in human isolates, limiting the therapeutic application of NA inhibitors. Here, we show that antibody-driven antigenic variation in one domain of the H1 hemagglutinin Sa site leads to compensatory mutations in NA, resulting in NA antigenic variation and acquisition of drug resistance.
View Article and Find Full Text PDFTranslational fidelity, essential for protein and cell function, requires accurate transfer RNA (tRNA) aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of one error per 10,000 to 100,000 couplings. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and might be considerably lower.
View Article and Find Full Text PDFProtein kinase PKR (also known as EIF2AK2) is activated during viral infection and phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), leading to inhibition of translation and viral replication. We report fast evolution of the PKR kinase domain in vertebrates, coupled with positive selection of specific sites. Substitution of positively selected residues in human PKR with residues found in related species altered sensitivity to PKR inhibitors from different poxviruses.
View Article and Find Full Text PDFThe Y chromosome encodes male-specific minor histocompatibility (H-Y) antigens that stimulate T- and B-lymphocyte responses after sex-mismatched allogeneic hematopoietic cell transplantation (HCT). A CD8(+) cytotoxic T lymphocyte (CTL) clone that recognizes a novel HLA-B*2705-restricted H-Y antigen encoded by the DDX3Y gene was isolated from a male who had received a hematopoietic cell graft from his human leukocyte antigen (HLA)-identical sister. The antigenic peptide is a decamer that differs from the homologous DDX3X-encoded peptide at 4 positions.
View Article and Find Full Text PDF