Publications by authors named "James S C Gilchrist"

μ-Calpain is a Ca(2+)-activated protease abundant in mammalian tissues. Here, we examined the effects of μ-calpain on three alternatively spliced variants of NCX1 using the giant, excised patch technique. Membrane patches from Xenopus oocytes expressing either heart (NCX1.

View Article and Find Full Text PDF

We investigated calpain activation in the heart during ischemia-reperfusion (I-R) by immunologically mapping the fragmentation patterns of calpain and selected calpain substrates. Western blots showed the intact 78 kDa large subunit of membrane-associated calpain was autolytically fragmented to 56 and 43 kDa signature immunopeptides following I-R. Under these conditions, the 78 kDa calpain large subunit from crude cytosolic fractions was markedly less fragmented, with only weakly stained autolytic peptides detected at higher molecular weights (70 and 64 kDa).

View Article and Find Full Text PDF

Diets rich in omega-3 polyunsaturated fatty acids are associated with decreased incidences of cardiovascular disease. The extent of incorporation and distribution of these beneficial fats into body tissues is uncertain. Rabbits were fed regular rabbit chow or a diet containing 10% ground flaxseed that is highly enriched with the omega-3 polyunsaturated fatty acid alpha-linolenic acid (ALA).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of a diet rich in flaxseed, which contains alpha-linolenic acid (ALA), on heart rhythm in rabbits during ischemic conditions, comparing it to other diets.
  • The research found that rabbits fed with flaxseed had significantly lower incidences of ventricular fibrillation (VF) during ischemia and reperfusion compared to those on a regular or cholesterol-rich diet.
  • Additionally, the flaxseed diet was associated with changes in QT intervals and action potential duration, suggesting that ALA may have protective antiarrhythmic effects.
View Article and Find Full Text PDF

In this study, we investigated whether nucleoplasmic free Ca2+ in aortic vascular smooth muscle cells (VSMCs) might be independently regulated from cytosolic free Ca2+. Understanding mechanisms and pathways responsible for this regulation is especially relevant given the role of a numerous intranuclear Ca2+-sensitive proteins in transcriptional regulation, apoptosis and cell division. The question of an independent regulatory mechanism remains largely unsettled because the previous use of intensitometric fluorophores (e.

View Article and Find Full Text PDF

We investigated the functional interdependence of sarco-endoplasmic reticulum Ca2+ ATPase isoform 1 and ryanodine receptor isoform 1 in heavy sarcoplasmic reticulum membranes by synchronous fluorescence determination of extravesicular Ca2+ transients and catalytic activity. Under conditions of dynamic Ca2+ exchange ATPase catalytic activity was well coordinated to ryanodine receptor activation/inactivation states. Ryanodine-induced activation of Ca2+ release channel leaks also produced marked ATPase activation in the absence of measurable increases in bulk free extravesicular Ca2+.

View Article and Find Full Text PDF

We have purified a prominent 110-kDa protein (p110) from 1.6 M NaCl extracts of rat liver nuclei that appears to bind Ca2+. p110 was originally identified by prominent blue staining with 'Stains-All' in sodium dodecyl sulfate-polyacrylamide gels and was observed to specifically bind ruthenium red and 45Ca2+ in nitrocellulose blot overlays.

View Article and Find Full Text PDF

Objectives: To determine whether chronic, rapid right atrial pacing in newborn neonatal piglets has any effects on cardiac hemodynamics, and whether these changes are associated with intrinsic alterations in cardiac contractile potential as shown by cardiac myofibrillar calcium ATPase activity.

Background: Although many studies have examined aspects of heart function in models of supraventricular tachycardia, far less is known about its effects in neonatal animals. It is thought that rapid pacing induces a dilated cardiomyopathy in immature pigs.

View Article and Find Full Text PDF