Publications by authors named "James Royer"

Ambient NO2 adsorption onto copper(II) phthalocyanine (CuPc) monolayers is observed using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) to elucidate the molecular sensing mechanism in CuPc chemical vapor sensors. For low doses (1 ppm for 5 min) of NO2 at ambient temperatures, isolated chemisorption sites on the CuPc metal centers are observed in STM images. These chemisorbates almost completely desorb from the CuPc monolayer after annealing at 100 °C for 30 min.

View Article and Find Full Text PDF

Air-stable organic thin-film transistor (OTFT) sensors fabricated using spin-cast films of 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (OBNc) demonstrated improved chemical vapor sensitivity and selectivity relative to vacuum-deposited phthalocyanine (H(2)Pc) OTFTs. UV-vis spectroscopy data show that annealed spin-cast OBNc films exhibit a red-shift in the OBNc Q-band λ(max) which is generally diagnostic of improved π-orbital overlap in phthalocyanine ring systems. Annealed OBNc OTFTs have mobilities of 0.

View Article and Find Full Text PDF

Chemical sensing properties of phthalocyanine thin-film transistors have been investigated using nearly identical n- and p-channel devices. P-type copper phthalocyanine (CuPc) has been modified with fluorine groups to convert the charge carriers from holes to electrons. The sensor responses to the tight binding analyte dimethyl methylphosphonate (DMMP) and weak binding analyte methanol (MeOH) were compared in air and N(2).

View Article and Find Full Text PDF

The seasonal accumulation of biological foam on the activated sludge system of the Urbana-Champaign Sanitary District Northeast (UCSD-NE) wastewater treatment plant was investigated over an 8-year period by statistical analyses including path analysis, multivariate regression, and principal component analysis. Results of these analyses suggested that variation in the activated sludge reactor temperature and the use of a stream bypassing the primary clarifier were the two main factors determining the observed temporal foam profile. Characterization of the primary clarifier influent and effluent suggested the involvement of high lipid loading rates from the bypass stream in foam accumulation.

View Article and Find Full Text PDF