Publications by authors named "James R Tonra"

Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations.

View Article and Find Full Text PDF

Reprogramming tumor infiltrating myeloid cells to elicit pro-inflammatory responses is an exciting therapeutic maneouver to improve anti-tumor responses. We recently demonstrated that a distinct microtubule-targeting drug, plinabulin-a clinical-stage novel agent-modulates dendritic cell maturation and enhances anti-tumor immunity. Here, we investigated the effects of plinabulin on macrophage polarization and .

View Article and Find Full Text PDF

Purpose: Chemotherapy-induced neutropenia (CIN) increases the risk of infections and mortality in cancer patients. G-CSF therapies are approved for the treatment of CIN, but non-G-CSF therapies are needed to increase efficacy and minimize side effects. Plinabulin is an inhibitor of tubulin polymerization that ameliorates CIN caused in patients by the microtubule stabilizer docetaxel.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the interaction between the V-ATPase a2-subunit isoform and cytohesin-2 (CTH2), identifying six key peptides from the a2 subunit that bind to CTH2.
  • They used homology modeling and NMR analysis to create a detailed 3D structural model of the a2N fragment, discovering the specific binding interface with CTH2, particularly in the proximal and distal lobe sub-domains.
  • The findings shed light on the functional relationship between V-ATPase and CTH2, which is important for developing potential drugs that could modulate their interaction.
View Article and Find Full Text PDF

Parathyroid hormone (PTH) affects the skeleton by acting on osteocytes (Ots) in bone through yet unclear mechanisms. We report that matrix metalloproteinase 14 (MMP14) expression/activity are increased in bones from mice with genetic constitutive activation (ca) of the PTH receptor 1 (PTH1R) in Ots (caPTH1R) and in bones from mice exposed to elevated PTH levels but not in mice lacking [conditional knockout (cKO)] the PTH1R in Ots (cKOPTH1R). Furthermore, PTH upregulates MMP14 in human bone cultures and in Ot-enriched bones from floxed control mice but not from cKOPTH1R mice.

View Article and Find Full Text PDF

Rho-associated kinase 2 (ROCK2) determines the balance between human T helper 17 (TH17) cells and regulatory T (Treg) cells. We investigated its role in the generation of T follicular helper (TFH) cells, which help to generate antibody-producing B cells under normal and autoimmune conditions. Inhibiting ROCK2 in normal human T cells or peripheral blood mononuclear cells from patients with active systemic lupus erythematosus (SLE) decreased the number and function of TFH cells induced by activation ex vivo.

View Article and Find Full Text PDF

Background: Although the addition of epidermal growth factor receptor (EGFR) antibodies to various platinum-based chemotherapy regimens for non-small cell lung cancer (NSCLC) is being actively pursued in the clinic, rationale for the prioritization of specific regimens is lacking.

Materials And Methods: We evaluated the antitumor effects of necitumumab, a recombinant human IgG1 antibody targeting EGFR, in combination with cisplatin plus gemcitabine, pemetrexed, or paclitaxel in a panel of 9 subcutaneous tumor models of NSCLC established in nu/nu athymic mice.

Results: Necitumumab in combination with cisplatin/gemcitabine was particularly effective, although interestingly, the mechanisms underlying these benefits were model dependent.

View Article and Find Full Text PDF

Background: Clinically relevant targets for developmental drug efficacy in animal models of cancer are critical yet understudied parameters.

Materials And Methods: Cetuximab, a chimeric antibody to epidermal growth factor receptor (EGFR), was administered to athymic mice bearing subcutaneous tumors established with 13 human colorectal cancer cell lines of varying biomarker status, defined by DNA sequencing and RT-PCR.

Results: If tumor growth inhibition is taken as a target, as is commonly done, then in contrast to the clinical situation where KRAS mutation strongly predicts for a lack of clinically meaningful benefit in colorectal cancer patients, cetuximab alone and in combination with irinotecan-based chemotherapy were efficacious in a similar proportion of KRAS wild-type and mutant models.

View Article and Find Full Text PDF

The benefits of inhibiting vascular endothelial growth factor (VEGF) signaling in cancer patients are predominantly attributed to effects on tumor endothelial cells. Targeting non-endothelial stromal cells to further impact tumor cell growth and survival is being pursued through the inhibition of additional growth factor pathways important for the survival and/or proliferation of these cells. However, recent data suggest that VEGF receptor (VEGFR)-specific inhibitors may target lymphatic vessels and pericytes in addition to blood vessels.

View Article and Find Full Text PDF

Microtubules are a well-validated target for anticancer therapy. Molecules that bind tubulin affect dynamic instability of microtubules causing mitotic arrest of proliferating cells, leading to cell death and tumor growth inhibition. Natural antitubulin agents such as taxanes and Vinca alkaloids have been successful in the treatment of cancer; however, several limitations have encouraged the development of synthetic small molecule inhibitors of tubulin function.

View Article and Find Full Text PDF

In testing novel anticancer therapies, researchers strive to utilize models that reflect the human disease as much as feasible. In this regard, orthotopic models are frequently developed because cancer cells in these models form tumors in, and metastasize from, a tissue environment similar to the tissue of origin of the cancer cells. Here we adapted an orthotopic colorectal cancer model, in which HT-29 colorectal cancer cells form tumors in the rectal lining and metastasize to the para-aortic lymph nodes with high frequency.

View Article and Find Full Text PDF

Cancer patients receiving epidermal growth factor receptor (EGFR) antibody therapy often experience an acneiform rash of uncertain etiology in skin regions rich in pilosebaceous units. Currently, this condition is treated symptomatically with very limited, often anecdotal success. Here, we show that a monoclonal antibody targeting murine EGFR, ME1, caused a neutrophil-rich hair follicle inflammation in mice, similar to that reported in patients.

View Article and Find Full Text PDF

Background: Rational strategies utilizing anticancer efficacy and biological principles are needed for the prioritization of specific combination targeted therapy approaches for clinical development, from among the many with experimental support.

Materials And Methods: Antibodies targeting epidermal growth factor receptor (EGFR) (cetuximab), insulin-like growth factor-1 receptor (IGF-IR) (IMC-A12) or vascular endothelial growth factor receptor 2 (VEGFR2) (DC101), were dosed alone or in combination, in 11 human tumor xenograft models established in mice. Efficacy readouts included the tumor burden and incidence of metastasis, as well as tumor active hypoxia inducible factor-1 (HIF-1), human VEGF and blood vessel density.

View Article and Find Full Text PDF

Targeted therapy for cancer is shifting towards an approach of inhibiting multiple pathways, justified in part by the ability of cancer cells to overcome the inhibition of a single pathway. However the literature is replete with preclinical data supporting the anticancer potential of numerous combinations of targeted agents, making it difficult to select the combination strategies to invest in through clinical development. One characteristic of a combination strategy that can be utilized for prioritization is synergy.

View Article and Find Full Text PDF

A series of arylphthalazine derivatives were synthesized and evaluated as antagonists of VEGF receptor II (VEGFR-2). IM-094482 57, which was prepared in two steps from commercially available starting materials, was found to be a potent inhibitor of VEGFR-2 in enzymatic, cellular and mitogenic assays (comparable activity to ZD-6474). Additionally, 57 inhibited the related receptor, VEGF receptor I (VEGFR-1), and showed excellent exposure when dosed orally to female CD-1 mice.

View Article and Find Full Text PDF

Vascular endothelial growth factor receptor (VEGFR) has recently been discovered on ovarian cancer cells, but its functional significance is unknown and is the focus of this study. By protein analysis, A2780-par and HeyA8 ovarian cancer cell lines expressed VEGFR-1 and HeyA8 A2774, and SKOV3ip1 expressed VEGFR-2. By in situ hybridization (ISH), 85% of human ovarian cancer specimens showed moderate to high VEGFR-2 expression, whereas only 15% showed moderate to high VEGFR-1 expression.

View Article and Find Full Text PDF

Purpose: To establish whether cetuximab, a chimeric IgG1 antibody targeting epidermal growth factor receptor, has the potential to restore responsiveness to oxaliplatin in preclinical cancer models, as has been shown with irinotecan in irinotecan refractory metastatic colorectal cancer patients.

Experimental Design: The effects of cetuximab and oxaliplatin, alone or in combination, were tested in vitro and in vivo using human colorectal cancer cell lines selected for oxaliplatin resistance, as well as parental control cell lines. Evaluations were made of subcutaneous xenograft tumor growth in nu/nu athymic mice, as well as activation of mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) and AKT, expression of DNA repair genes, density of apurinic/apyrimidinic DNA damage, and accumulation of platinum-DNA adducts in vitro.

View Article and Find Full Text PDF

Targeted monoclonal antibody therapy is an important strategy in cancer therapeutics. Among the most promising characteristics of therapeutic targets are those that modulate the growth and survival of malignant neoplasms and their sensitivity to anticancer therapies. The insulin-like growth factor-I receptor (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and has been implicated as a principal cause of heightened proliferative and survival signaling.

View Article and Find Full Text PDF

Platelet-derived growth factor (PDGF) and its receptors (PDGFR) play important roles in tumorigenesis through stimulating tumor growth and promoting angiogenesis via enhancing pericyte recruitment and vessel maturation. Here we produced a neutralizing antibody, 1B3, directed against mouse PDGFRbeta. 1B3 binds to PDGFRbeta with high affinity (9x10(-11)M) and blocks PDGF-BB from binding to the receptor with an IC(50) of approximately 1.

View Article and Find Full Text PDF

Purpose: Targeting the epidermal growth factor receptor (EGFR) is a validated approach to treat cancer. In non-small cell lung cancer (NSCLC), EGFR contains somatic mutations in 10% of patients, which correlates with increased response rates to small molecule inhibitors of EGFR. We analyzed the effects of the monoclonal IgG1 antibody Erbitux (cetuximab) in NSCLC xenografts with wild-type (wt) or mutated EGFR.

View Article and Find Full Text PDF

Vascular endothelial growth factor receptor 3 (VEGFR-3) binds VEGF-C and VEGF-D and is essential for the development of the lymphatic vasculature. Experimental tumors that overexpress VEGFR-3 ligands induce lymphatic vessel sprouting and enlargement and show enhanced metastasis to regional lymph nodes and beyond, whereas a soluble form of VEGFR-3 that blocks receptor signaling inhibits these changes and metastasis. Because VEGFR-3 is also essential for the early blood vessel development in embryos and is up-regulated in tumor angiogenesis, we wanted to determine if an antibody targeting the receptor that interferes with VEGFR-3 ligand binding can inhibit primary tumor growth.

View Article and Find Full Text PDF

Over 30 years ago, it was proposed that blocking new blood vessel formation would significantly inhibit solid tumor growth and hence, limit cancer progression. Efforts guided by this philosophy have resulted in a better understanding of the molecular basis of tumor angiogenesis. The first successful therapeutic to emerge from this work, an antibody (bevacizumab) targeting the vascular endothelial growth factor (VEGF), was recently approved for the treatment of colorectal cancer.

View Article and Find Full Text PDF

We generated three fully human monoclonal antibody antagonists against fibroblast growth factor receptor-1 (FGFR1) that potently block FGF signaling. We found that antibodies targeting the c-splice form of the receptor (FGFR1c) were anorexigenic when administered intraperitoneally three times weekly to mice, resulting in rapid, dose-dependent weight loss that plateaued (for doses>4 mg/kg) at 35-40% in 2 wk. Animals appeared healthy during treatment and regained their normal body weights and growth trajectories upon clearance of the antibodies from the bloodstream.

View Article and Find Full Text PDF

Purpose: Vascular endothelial growth factor receptor-1 (VEGFR-1) plays important roles in promotion of tumor growth by mediating cellular functions in tumor vascular endothelium and cancer cells. Blockade of VEGFR-1 activation has been shown to inhibit pathologic angiogenesis and tumor growth, implicating VEGFR-1 as a potential therapeutic target for the treatment of cancer. We have thus developed a VEGFR-1 antagonist human monoclonal antibody designated as IMC-18F1 and evaluated its antitumor activity in preclinical experimental models to show the therapeutic potential of the antibody for cancer treatment in clinic.

View Article and Find Full Text PDF

Purpose: Combination therapies that target the epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) pathways, are being actively tested for the treatment of cancer. In evaluating combination strategies, the ideal combination would be one in which the treatments interact in a way that is synergistic with regard to antitumor effects. Here, we have evaluated the interaction between anti-EGFR antibody Erbitux (cetuximab) and anti-VEGFR2 antibody, DC101, in preclinical models of pancreatic (BxPC-3) and colon (GEO) cancer.

View Article and Find Full Text PDF