Publications by authors named "James R Shoblock"

Recently, our group along with another demonstrated that GPR139 can be activated by L-phenylalanine (L-Phe) and L-tryptophan (L-Trp) at physiologically relevant concentrations. GPR139 is discretely expressed in brain, with highest expression in medial habenula. Not only are the endogenous ligands catecholamine/serotonin precursors, but GPR139 expressing areas can directly/indirectly regulate the activity of catecholamine/serotonin neurons.

View Article and Find Full Text PDF

In the central nervous system, the ATP-gated Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is expressed in glial cells and modulates neurophysiology via release of gliotransmitters, including the proinflammatory cytokine interleukin (IL)-1β. In this study, we characterized JNJ-42253432 [2-methyl-N-([1-(4-phenylpiperazin-1-yl)cyclohexyl]methyl)-1,2,3,4-tetrahydroisoquinoline-5-carboxamide] as a centrally permeable (brain-to-plasma ratio of 1), high-affinity P2X7 antagonist with desirable pharmacokinetic and pharmacodynamic properties for in vivo testing in rodents. JNJ-42253432 is a high-affinity antagonist for the rat (pKi 9.

View Article and Find Full Text PDF

Unlabelled: Neuropeptide Y2 (NPY2) receptors are implicated in diverse brain disorders, but no suitable PET radiotracers are currently available for studying NPY2 receptors in the living brain. We developed a novel positron-emitting radioligand based on the NPY2 receptor antagonist JNJ-31020028 (N-(4-(4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl)-3-fluorophenyl)-2-pyridin-3-ylbenzamide) and used the radiotracer for PET brain imaging in pigs.

Methods: In vitro receptor autoradiography studies were performed to establish the anatomic distribution of NPY2 receptors in the pig brain.

View Article and Find Full Text PDF

Background And Purpose: An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist.

Experimental Approach: We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1β release) in both recombinant and native systems.

View Article and Find Full Text PDF

Rationale: Orexin-1 receptor antagonists have been shown to block the reinforcing effects of drugs of abuse and food. However, whether blockade of orexin-2 receptor has similar effects has not been determined. We have recently described the in vitro and in vivo effects of JNJ-10397049, a selective and brain penetrant orexin-2 receptor antagonist.

View Article and Find Full Text PDF

Rationale: A few recent studies suggest that brain histamine levels and signaling via H(3) receptors play an important role in modulation of alcohol stimulation and reward in rodents.

Objective: The present study characterized the effects of a novel, selective, and brain penetrant H(3) receptor antagonist (JNJ-39220675) on the reinforcing effects of alcohol in rats.

Methods: The effect of JNJ-39220675 on alcohol intake and alcohol relapse-like behavior was evaluated in selectively bred alcohol-preferring (P) rats using the standard two-bottle choice method.

View Article and Find Full Text PDF

Rationale: The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor.

Objective: Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist.

Methods: The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus.

View Article and Find Full Text PDF

Rationale: Histamine H3 receptors (H3R) are presynaptic heteroreceptors that negatively modulate the release of histamine and other neurotransmitters such as acetylcholine. Blocking H3 receptors with antagonists/inverse agonists has been shown to be procognitive and this effect has often been associated with increases in acetylcholine transmission. H3 receptors are abundantly expressed in the prefrontal cortex, an area associated with cognitive performance.

View Article and Find Full Text PDF

The NOP receptor (formerly referred to as opiate receptor-like 1, ORL-1, LC132, OP(4), or NOP(1)) is a G protein-coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann-La Roche reported on the selective, nonpeptide NOP agonist Ro 64-6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target.

View Article and Find Full Text PDF

Naloxone administration produces a robust conditioned place aversion (CPA) in opiate-naive rodents by blocking the action of enkephalins at mu opioid receptors. This aversive response is potentiated by prior exposure to morphine. In vitro studies indicate that morphine treatment may promote constitutive activity of mu opioid receptors.

View Article and Find Full Text PDF

ORL-1 agonists have been proposed as potential therapeutics for substance abuse based on their propensity to counter the effects of mu opioid agonists in several systems, and to inhibit mesolimbic dopamine release, while mostly being devoid of aversive properties. In support of this, ORL-1 agonists have been shown to block the acquisition of morphine conditioned place preference (CPP). We investigated the effect of Ro 64-6198, a systemically active ORL-1 agonist, on the acquisition, expression, extinction, and reinstatement of morphine (20 mg/kg, s.

View Article and Find Full Text PDF

Amphetamine is more effective than methamphetamine at raising dopamine levels in the prefrontal cortex. The current study tested the hypothesis that norepinephrine transporters are involved in this difference. Using microdialysis, dopamine, norepinephrine, and serotonin were measured in the rat prefrontal cortex after administration of methamphetamine or amphetamine, with and without perfusion of desipramine.

View Article and Find Full Text PDF

Rationale: Previously, we have shown that d-amphetamine (AMPH) was more potent than d-methamphetamine (METH) at increasing extracellular levels of dopamine (DA) in the prefrontal cortex (PFC) at doses that had similar effects in the nucleus accumbens. Since working memory depends on PFC DA, it was postulated that AMPH would also be more potent than METH at affecting working memory.

Objective: To determine if AMPH is more potent than METH at affecting working memory.

View Article and Find Full Text PDF

Rationale: Methamphetamine (METH) and amphetamine (AMPH) are both abused psychostimulants. Although METH is generally accepted to be more addictive and potent than its analogue AMPH, there are no known neurobiological differences in action between the two drugs that may account for such differences.

Objective: METH and AMPH were compared to determine potential mechanisms for such differences between the two drugs in order to provide new targets for the treatment of METH addiction.

View Article and Find Full Text PDF