Publications by authors named "James R Peters"

Background Context: The majority of existing literature describing pediatric lumbar vertebral morphology are limited to characterization of the vertebral bodies, pedicles, and spinal canal and no study has described the rates of growth for any lumbar vertebral structure. While it is known that growth of the lumbar vertebrae results in changes in vertebral shape, the dimension ratios used to quantify these shape changes do not represent the 3D morphology of the vertebral structures. Additionally, many of the previous evaluations of growth and shape are purely descriptive and do not investigate sexual dimorphism or variations across vertebral levels.

View Article and Find Full Text PDF

Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models.

View Article and Find Full Text PDF

Generalized Procrustes Analysis (GPA) is a superimposition method used to generate size-invariant distributions of homologous landmark points. Several studies have used GPA to assess the three-dimensional (3D) shapes of or to evaluate sex-related differences in the human brain, skull, rib cage, pelvis and lower limbs. Previous studies of the pediatric thoracic vertebrae suggest that they may undergo changes in shape asa result of normative growth.

View Article and Find Full Text PDF

Purpose: Based on the structural anatomy, loading condition and range of motion (ROM), no quadruped animal has been shown to accurately mimic the structure and biomechanical function of the human spine. The objective of this study is to quantify the thoracic vertebrae geometry of the kangaroo, and compare with adult human, pig, sheep, and deer.

Methods: The thoracic vertebrae (T1-T12) from whole body CT scans of ten juvenile kangaroos (ages 11-14 months) were digitally reconstructed and geometric dimensions of the vertebral bodies, endplates, pedicles, spinal canal, processes, facets and intervertebral discs were recorded.

View Article and Find Full Text PDF

Background Context: Although it is well known that the growth of thoracic spine changes significantly with age, gender, and vertebral level in the skeletally normal pediatric population, there have been very few studies attempting to comprehensively quantify such variations. Biomechanical and computational models of the growing thoracic spine have provided insight into safety and efficacy of surgical and noninvasive treatments for spinal deformity. However, many of these models only consider growth of the vertebral body and pedicles and assume a consistent growth rate for these structures across thoracic levels.

View Article and Find Full Text PDF

Context: In older adults, loss of mobility due to sarcopenia is exacerbated in men with low serum T. T replacement therapy is known to increase muscle mass and strength, but the effect of weekly (WK) vs monthly (MO) administration on specific fiber types is unknown.

Objective: To determine the efficacy of WK vs MO T replacement on the size and functional capacity of individual fast and slow skeletal muscle fiber types.

View Article and Find Full Text PDF