Metabolic reengineering using nanoparticle delivery represents an innovative therapeutic approach to normalizing the deregulation of cellular metabolism underlying many diseases, including cancer. Here, we demonstrated a unique and novel application to the treatment of malignancy using a short-chain fatty acid (SCFA)-encapsulated lipid-based delivery system - liposome-encapsulated acetate nanoparticles for cancer applications (LITA-CAN). We assessed chronic in vivo administration of our nanoparticle in three separate murine models of colorectal cancer.
View Article and Find Full Text PDFIsolated blastomycosis hand infections are extremely rare, and are often clinically unsuspected, leading to delays in clinical diagnosis. Conclusive diagnosis often necessitates fungal cultures and histopathological demonstration of budding yeasts in tissues. In this report, we describe the rare occurrence of isolated blastomycotic hand infection, without any other organ involvement, in a 42-year-old male patient.
View Article and Find Full Text PDFTraumatic rupture of the quadriceps tendon by itself is not an uncommon clinical condition. However, its association with concurrent ipsilateral closed distal tibia oblique fracture is exceedingly rare with only one previously reported case in English literature. The dual diagnosis of this atypical combination of injury may be masked by pain and immobilization of the more obvious fracture and may be missed, unless the treating physician maintains a high index of suspicion.
View Article and Find Full Text PDFObjective: Infants born to mothers with gestational diabetes mellitus (GDM) are at greater risk of later adverse metabolic health. We examined plausible candidate mediators, adipose tissue (AT) quantity and distribution and intrahepatocellular lipid (IHCL) content, comparing infants of mothers with GDM and without GDM (control group) over the first 3 postnatal months.
Research Design And Methods: We conducted a prospective longitudinal study using MRI and spectroscopy to quantify whole-body and regional AT volumes, and IHCL content, within 2 weeks and 8-12 weeks after birth.
Nestle Nutr Inst Workshop Ser
October 2016
Preterm birth and survival rates are rising globally, and consequently there is a growing necessity to safeguard life-long health. Epidemiological and other studies from around the world point to a higher risk of adverse adult health outcomes following preterm birth. These reports encompass morbidities in multiple domains, poorer reproductive health, and reduced longevity.
View Article and Find Full Text PDFBackground: Maternal Body Mass Index (BMI) is positively associated with infant obesity risk. Breast milk contains a number of hormones that may influence infant metabolism during the neonatal period; these may have additional downstream effects on infant appetite regulatory pathways, thereby influencing propensity towards obesity in later life.
Objective: To conduct a systematic review of studies examining the association between maternal BMI and the concentration of appetite-regulating hormones in breast milk.
Background: The effect of mode of infant feeding on adiposity deposition is not fully understood.
Objective: The objective was to test the hypothesis that differences in total and regional adipose tissue content and intrahepatocellular lipid (IHCL) arise in early infancy between breast- and formula-fed infants and to describe longitudinal changes.
Design: This prospective longitudinal cohort study was performed in 2 hospitals in the United Kingdom.
Background: Preterm birth is associated with features of the metabolic syndrome in later life. We performed a systematic review and meta-analysis of studies reporting markers of the metabolic syndrome in adults born preterm.
Methods: Reports of metabolic syndrome-associated features in adults (≥18 years of age) born at <37-week gestational age and at term (37- to 42-week gestational age) were included.
Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In).
View Article and Find Full Text PDFManganese enhanced MRI (MEMRI) is an imaging paradigm that can be used to assess neuronal activity in vivo. Here we investigate, through the use of MEMRI, the influence of receptor dynamics on neuronal activity in the hypothalamus and hippocampus focusing on the glutamate receptor signalling system. We demonstrate that intraperitoneal (i.
View Article and Find Full Text PDFOur investigation addresses the hypothesis that disruption of third trimester development by preterm birth alters multiple biological pathways affecting metabolic health in adult life. We compared healthy adult volunteers aged 18-27 y born at ≤ 33 wk gestation or at term. We used whole-body MRI, (1)H magnetic resonance spectroscopy (MRS) of liver and muscle, metabonomic profiling of blood and urine, and anthropometric and blood pressure measurements.
View Article and Find Full Text PDFObesity (Silver Spring)
January 2012
Individual compartments of abdominal adiposity and lipid content within the liver and muscle are differentially associated with metabolic risk factors, obesity and insulin resistance. Subjects with greater intra-abdominal adipose tissue (IAAT) and hepatic fat than predicted by clinical indices of obesity may be at increased risk of metabolic diseases despite their "normal" size. There is a need for accurate quantification of these potentially hazardous depots and identification of novel subphenotypes that recognize individuals at potentially increased metabolic risk.
View Article and Find Full Text PDFManganese-enhanced magnetic resonance imaging (MEMRI) is a novel imaging technique capable of monitoring calcium influx, in vivo. Manganese (Mn2+) ions, similar to calcium ions (Ca2+), are taken up by activated cells where their paramagnetic properties afford signal enhancement in T(1)-weighted MRI methodologies. In this study we have assessed Mn2+ distribution in mice using magnetization-prepared rapid gradient echo (MP-RAGE) based MRI, by measuring changes in T(1)-effective relaxation times (T(1)-eff), effective R(1)-relaxation rates (R(1)-eff) and signal intensity (SI) profiles over time.
View Article and Find Full Text PDFN-3 polyunsaturated fatty acids (n-3 PUFA) are known to have cardiovascular and neuroprotective properties in both humans and rodents. Here, we use manganese-enhanced magnetic resonance imaging (MEMRI) to compare the effects of these polyunsaturated fatty acids on the combined effects of neuronal activity and integrity of blood-brain barrier integrity with saturated fatty acids from buttermilk. C57BL/6 mice (4 weeks old) were fed isocaloric diets containing 3% fish oil (3% FO, n=5), 12% fish oil (FO, n=6), 3% buttermilk (3% BM, n=6) or 12% buttermilk (12% BM, n=6) for 6 months.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
February 2010
The kisspeptins are neuropeptides that stimulate the hypothalamo-pituitary-gonadal (HPG) axis. The smallest endogenous kisspeptin, kisspeptin-10 (KP-10), binds to the receptor KISS1R with a similar affinity to the full-length peptide, kisspeptin-54 (KP-54), but is less effective in vivo, possibly because of increased enzymatic breakdown or clearance. The kisspeptin system may have therapeutic potential in the treatment of reproductive disorders and endocrine cancers.
View Article and Find Full Text PDFCarbon-13 ((13)C) high-resolution magic angle spinning (HR-MAS) spectroscopy was used to investigate the neuroglial coupling mechanisms underlying appetite regulation in the brain of C57BL/6J mice metabolizing [1-(13)C]glucose. Control fed or overnight fasted mice received [1-(13)C]glucose (20 micromol/g intraperitoneally [i.p.
View Article and Find Full Text PDFWe have used manganese-enhanced magnetic resonance imaging (MEMRI) to show distinct patterns of neuronal activation within the hypothalamus and brainstem of fasted mice in response to peripheral injection of the anorexigenic agents glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and lithium chloride. Administration of both GLP-1 and OXM resulted in a significant increase in signal intensity (SI) in the area postrema of fasted mice, reflecting an increase in neuronal activity within the brainstem. In the hypothalamus, GLP-1 administration induced a significant reduction in SI in the paraventricular nucleus and an increase in the ventromedial hypothalamic nucleus whereas OXM reduced SI in the arcuate and supraoptic nuclei of the hypothalamus.
View Article and Find Full Text PDFThe global increase in obesity has led to a redoubling of efforts directed at understanding the control of energy homeostasis. Insight into the mechanisms which govern appetite regulation is central to understanding the pathophysiology of obesity and the design of effective therapeutic interventions. Exploitation of hormonal satiety signals secreted by the gut requires greater insight into their interaction with central nervous system (CNS) circuits of appetite control.
View Article and Find Full Text PDFPeptide YY (PYY) is secreted postprandially from the endocrine L cells of the gastrointestinal tract. PYY(3-36), the major circulating form of the peptide, is thought to reduce food intake in humans and rodents via high-affinity binding to the autoinhibitory neuropeptide Y (NPY) receptor within the arcuate nucleus. We studied the effect of early light-phase injection of PYY(3-36) on food intake in mice fasted for 0, 6, 12, 18, 24, and 30 h and show that PYY(3-36) produces an acute anorexigenic effect regardless of the duration of fasting.
View Article and Find Full Text PDFHormonal satiety signals secreted by the gut play a pivotal role in the physiological control of appetite. However, therapeutic exploitation of the gut-brain axis requires greater insight into the interaction of gut hormones with CNS circuits of appetite control. Using the manganese ion (Mn2+) as an activity-dependent magnetic resonance imaging (MRI) contrast agent, we showed an increase in signal intensity (SI) in key appetite-regulatory regions of the hypothalamus, including the arcuate, paraventricular, and ventromedial nuclei, after peripheral injection of the orexigenic peptide ghrelin.
View Article and Find Full Text PDFThe anorexigenic gut hormones oxyntomodulin (OXM) and glucagon-like peptide-1 (GLP-1) are thought to physiologically regulate appetite and food intake. Using manganese-enhanced magnetic resonance imaging, we have shown distinct patterns of neuronal activation in the hypothalamus in response to intraperitoneal injections into fasted mice of 900 and 5400 nmol/kg OXM or 900 nmol/kg GLP-1. Administration of OXM at either dose resulted in a reduced rate of signal enhancement, reflecting a reduction in neuronal activity, in the arcuate, paraventricular, and supraoptic nuclei of the hypothalamus.
View Article and Find Full Text PDFObesity is currently the major cause of premature death in the UK, killing almost 1000 individuals per week, and worldwide, its prevalence is accelerating. Many peptides are synthesized and released from the gastrointestinal tract and, while their roles in the regulation of gastrointestinal function have been known for some time, it is now evident that they also physiologically influence eating behavior. Therefore, manipulation of gastrointestinal hormones provides the prospect of an effective and well-tolerated treatment for obesity.
View Article and Find Full Text PDFBrain Res
May 2005
The vagus nerve forms a neuro-anatomical link between the gastrointestinal tract and the brain. A number of gastrointestinal hormones, including cholecystokinin and ghrelin, require an intact vagal-brainstem-hypothalamic pathway to affect CNS feeding circuits. We have shown that the effects of peripheral administration of both peptide YY(3-36) (PYY(3-36)) and glucagon-like peptide-1 (GLP-1) on food intake and activation of hypothalamic arcuate feeding neurones are abolished following either bilateral sub-diaphragmatic total truncal vagotomy or brainstem-hypothalamic pathway transectioning in rodents.
View Article and Find Full Text PDF