Transcranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (L-DLPFC) is an established intervention for treatment-resistant depression (TRD), yet the underlying therapeutic mechanisms remain not fully understood. This study employs an integrative approach that combines TMS with concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), aimed at assessing the acute/immediate effects of TMS on brain network dynamics and their correlation with clinical outcomes. Our study demonstrates that TMS acutely modulates connectivity within vital brain circuits, particularly the cognitive control and default mode networks.
View Article and Find Full Text PDFElectromagnetic stimulation probes and modulates the neural systems that control movement. Key to understanding their effects is the muscle recruitment curve, which maps evoked potential size against stimulation intensity. Current methods to estimate curve parameters require large samples; however, obtaining these is often impractical due to experimental constraints.
View Article and Find Full Text PDFVolitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) is a non-invasive FDA-approved therapy for major depressive disorder (MDD), specifically for treatment-resistant depression (TRD). Though offering promise for those with TRD, its effectiveness is less than one in two patients (i.e.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) is an FDA-approved therapy for major depressive disorder (MDD), specifically for patients who have treatment-resistant depression (TRD). However, TMS produces response or remission in about 50% of patients but is ineffective for the other 50%. Limits on efficacy may be due to individual patient variability, but to date, there are no good biomarkers or measures of target engagement.
View Article and Find Full Text PDFVolitional movement requires descending input from motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity.
View Article and Find Full Text PDFAlthough epidural stimulation of the lumbar spinal cord has emerged as a powerful modality for recovery of movement, how it should be targeted to the cervical spinal cord to activate arm and hand muscles is not well understood, particularly in humans. We sought to map muscle responses to posterior epidural cervical spinal cord stimulation in humans. We hypothesized that lateral stimulation over the dorsal root entry zone would be most effective and responses would be strongest in the muscles innervated by the stimulated segment.
View Article and Find Full Text PDFThe central nervous system (CNS) integrates sensory and motor information to acquire skilled movements, known as sensory-motor integration (SMI). The reciprocal interaction of the sensory and motor systems is a prerequisite for learning and performing skilled movement. Injury to various nodes of the sensorimotor network causes impairment in movement execution and learning.
View Article and Find Full Text PDFMusical improvisers are trained to categorize certain musical structures into functional classes, which is thought to facilitate improvisation. Using a novel auditory oddball paradigm (Goldman et al., 2020) which enables us to disassociate a deviant (i.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
January 2021
Objective: The concurrent recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a technique that has received much attention due to its potential for combined high temporal and spatial resolution. However, the ballistocardiogram (BCG), a large-amplitude artifact caused by cardiac induced movement contaminates the EEG during EEG-fMRI recordings. Removal of BCG in software has generally made use of linear decompositions of the corrupted EEG.
View Article and Find Full Text PDFThe Simon effect is observed in spatial conflict tasks where the response time of subjects is increased if stimuli are presented in a lateralized manner so that they are incongruous with the response information that they represent symbolically. Previous studies have used fMRI to investigate this phenomenon, and while some have been driven by considerations of an underlying model, none have attempted to directly tie model and BOLD response together. It is likely that this is due to Simon models having been predominantly descriptive of the phenomenon rather than capturing the full spectrum of behavior at the level of individual subjects.
View Article and Find Full Text PDFPerceptual decisions pervade our every-day lives, and can align or conflict with inbuilt biases. We investigated these conflicting biases by applying transcranial random noise stimulation (tRNS) while subjects took part in a visual Simon task - a paradigm where irrelevant spatial cues influence the response times of subjects to relevant colour cues. We found that tRNS reduces the response time of subjects independent of the congruence between spatial and colour cues, but dependent on the baseline response time, both between subjects and across conditions within subjects.
View Article and Find Full Text PDF