Publications by authors named "James R Ketudat Cairns"

While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy.

View Article and Find Full Text PDF

Background: In order to generate a normal set of teeth, fine-tuning of Wnt/β-catenin signaling is required, in which WNT ligands bind to their inhibitors or WNT inhibitors bind to their co-receptors. Lrp4 regulates the number of teeth and their morphology by modulating Wnt/β-catenin signaling as a Wnt/β-catenin activator or inhibitor, depending on its interactions with the partner proteins, such as Sostdc1 and Dkk1.

Aim: To investigate genetic etiologies of dental anomalies involving LRP4 in a Thai cohort of 250 children and adults with dental anomalies.

View Article and Find Full Text PDF

The crystal structure of the Thermoanaerobacterium xylanolyticum in glycoside hydrolase family 116 (TxGH116) β-glucosidase provides a structural model for human GBA2 glucosylceramidase, an enzyme defective in hereditary spastic paraplegia and a potential therapeutic target for treating Gaucher disease. To assess the therapeutic potential of known inhibitors, the X-ray structure of TxGH116 in complex with isofagomine (IFG) was determined at 2.0 Å resolution and showed the IFG bound in a relaxed chair conformation.

View Article and Find Full Text PDF

In the present study, we derivatized several hydroxycinnamic and hydroxybenzoic acids to phenolic amides (PAMs) one step BOP mediated amide coupling reactions. Fifteen PAMs were synthesized in >40% yields and were screened for their cytotoxic activities against four cancer cell lines: THP-1 (leukaemia), HeLa (cervical), HepG2 (liver), and MCF-7 (breast), in comparison to 5-flurouracil (5-FU). Four amides showed IC ranging from 5 to 55 µM against all four cell lines.

View Article and Find Full Text PDF

β-Galactosidases (Bgals) remove terminal β-D-galactosyl residues from the nonreducing ends of β-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure.

View Article and Find Full Text PDF

Retaining glycoside hydrolases use acid/base catalysis with an enzymatic acid/base protonating the glycosidic bond oxygen to facilitate leaving-group departure alongside attack by a catalytic nucleophile to form a covalent intermediate. Generally, this acid/base protonates the oxygen laterally with respect to the sugar ring, which places the catalytic acid/base and nucleophile carboxylates within about 4.5-6.

View Article and Find Full Text PDF

In this study, we developed functional nanomaterials via a phenolic-enabled nanotechnology strategy for hypoxia detection employing quercetin (QCT), an abundant flavonoid, as a polyphenolic system. The nano form of QCT was stabilized by coating it with polyethylene glycol (PEG) before loading it with a flavylium dye (Flav) as a pH indicator. The nanosystem, Flav@QCT-PEG, collapsed when it was in an acidic environment, i.

View Article and Find Full Text PDF

Dihydropyrimidinase (DHPase) is a key enzyme in the pyrimidine pathway, the catabolic route for synthesis of β-amino acids. It catalyses the reversible conversion of 5,6-dihydrouracil (DHU) or 5,6-dihydrothymine (DHT) to the corresponding -carbamoyl-β-amino acids. This enzyme has the potential to be used as a tool in the production of β-amino acids.

View Article and Find Full Text PDF

One of the most important steps in post-translational modifications of collagen type I chains is the hydroxylation of carbon-3 of proline residues by prolyl-3-hydroxylase-1 (P3H1). Genetic variants in have been reported to cause autosomal recessive osteogenesis imperfecta (OI) type VIII. Clinical and radiographic examinations, whole-exome sequencing (WES), and bioinformatic analysis were performed in 11 Thai children of Karen descent affected by multiple bone fractures.

View Article and Find Full Text PDF

Background: Low density lipoprotein receptor-related protein 4 (LRP4; MIM 604270) modulates WNT/β-catenin signaling, through its binding of WNT ligands, and to co-receptors LRP5/6, and WNT inhibitors DKK1, SOSTDC1, and SOST. LRP4 binds to SOSTDC1 and WNT proteins establishing a negative feedback loop between Wnt/β-catenin, Bmp, and Shh signaling during the bud and cap stages of tooth development. Consistent with a critical role for this complex in developing teeth, mice lacking or have multiple dental anomalies including supernumerary incisors and molars.

View Article and Find Full Text PDF

Introduction: Inactivating mutations of the calcium-sensing receptor (CASR) gene result in neonatal severe hyperparathyroidism (NSHPT). Total parathyroidectomy is an effective way to control life-threatening hypercalcemia in NSHPT but leads to permanent hypoparathyroidism. An alternative surgical option is subtotal parathyroidectomy.

View Article and Find Full Text PDF

A mutation in DKK1 gene leads to inhibitory DKK1 function, over-activation of WNT/β-catenin signaling, disruptive development of dental epithelium, and subsequent mesiodens formation.

View Article and Find Full Text PDF

Background: Canonical and non-canonical WNT signaling are important for odontogenesis. WNT ligand secretion mediator (WLS; MIM611514) is required to transport lipid-modified WNT proteins from the Golgi to the cell membrane, where canonical and non-canonical WNT proteins are released into the extracellular milieu. Biallelic pathogenic variants in WLS are implicated in autosomal recessive Zaki syndrome (ZKS; MIM 619648), the only genetic condition known to be caused by pathogenic variants in WLS.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I Hurler syndrome (MPS IH) is a severe lysosomal storage disorder caused by alpha-l-iduronidase (IDUA) deficiency. Premature truncation mutations (PTC) are the most common (50%-70%) type of IDUA mutations and correlate with MPS IH. Nonsense suppression therapy is a therapeutic approach that aims to induce stop codon readthrough.

View Article and Find Full Text PDF

In the barley β-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures β-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric β-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-β-D-glucosidase.

View Article and Find Full Text PDF

Objective: The objective of this study was to investigate molecular etiologies of oral exostoses and dental anomalies in 14 patients from eight families.

Methods: Oral and radiographic examinations were performed on every patient. Whole exome and Sanger sequencing were performed on DNA of the patients, the unaffected parents and unaffected siblings.

View Article and Find Full Text PDF

WNT/β-catenin and BMP signaling pathways play important roles in the process of tooth development. Dysregulation of WNT/β-catenin and BMP signaling is implicated in a number of human malformations, including dental anomalies. Whole exome and Sanger sequencing identified seven patients with LRP5 mutations (p.

View Article and Find Full Text PDF

Objective: WNT/β-catenin signaling is initiated by binding of a WNT protein to a Frizzled (FZD) receptor and a co-receptor, low-density lipoprotein (LDL) receptor-related protein 5 or 6 (LRP5/6). The objective of this study was to find the genetic variants responsible for dental anomalies found in 4 families.

Methods: Clinical and radiographic examination and whole exome sequencing were performed on 5 patients affected with dental anomalies and the mutant proteins modeled.

View Article and Find Full Text PDF

Mutations in LTBP3 are associated with Dental Anomalies and Short Stature syndrome (DASS; MIM 601216), which is characterized by hypoplastic type amelogenesis imperfecta, hypodontia, underdeveloped maxilla, short stature, brachyolmia, aneurysm and dissection of the thoracic aorta. Here we report a novel (p.Arg545ProfsTer22) and a recurrent (c.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is an aggressive tumor of the biliary epithelium with poor survival that shows limited response to conventional chemotherapy. Increased expression of glucosylceramide synthase (GCS) contributes to drug resistance and the progression of various cancers; the expression profiles of GCS (UGCG) and the genes for glucocerebrosidases 1, 2, and 3 (GBA1, GBA2, and GBA3) were therefore studied in CCA. The biological functions of GCS for cell proliferation and cisplatin sensitivity in CCA were explored.

View Article and Find Full Text PDF

Plants possess many glycoside hydrolase family 1 (GH1) β-glucosidases, which physiologically function in cell wall metabolism and activation of bioactive substances, but most remain uncharacterized. One GH1 isoenzyme AtBGlu42 in Arabidopsis thaliana has been identified to hydrolyze scopolin using the gene deficient plants, but no enzymatic properties were obtained. Its sequence similarity to another functionally characterized enzyme Os1BGlu4 in rice suggests that AtBGlu42 also acts on oligosaccharides.

View Article and Find Full Text PDF

α-Glucosyl triazoles have rarely been tested as α-glucosidase inhibitors, partly due to inefficient synthesis of their precursor α-d-glucosylazide (). Glycosynthase enzymes, made by nucleophile mutations of retaining β-glucosidases, produce in chemical rescue experiments. glucosyl hydrolase 116 β-glucosidase (GH116) E441G nucleophile mutant catalyzed synthesis of from sodium azide and NP-β-d-glucoside (NPGlc) or cellobiose in aqueous medium at 45 °C.

View Article and Find Full Text PDF