Bioorg Med Chem Lett
December 2020
N-substituted azaindoles were discovered as potent pan-PIM inhibitors. Lead optimization, guided by structure and focused on physico-chemical properties allowed us to solve inherent hERG and permeability liabilities, and provided compound 27, which subsequently impacted KG-1 tumor growth in a mouse model.
View Article and Find Full Text PDFMetachromatic leukodystrophy (MLD) is a rare, genetic lysosomal storage disorder caused by the deficiency of arylsulfatase A enzyme, which results in the accumulation of sulfatide in the lysosomes of the tissues of central and peripheral nervous systems, leading to progressive demyelination and neurodegeneration. Currently there is no cure for this disease, and the only approved therapy, hematopoietic stem cell transplant, has limitations. We proposed substrate reduction therapy (SRT) as a novel approach to treat this disease, by inhibiting ceramide galactosyltransferase enzyme (UGT8).
View Article and Find Full Text PDFN-substituted azaindoles were discovered as promising pan-PIM inhibitors. Lead optimization is described en route toward the identification of a clinical candidate. Modulation of physico-chemical properties allowed to solve inherent hERG and permeability liabilities.
View Article and Find Full Text PDFN-Substituted azaindoles have been discovered as pan-PIM kinase inhibitors. Initial SAR, early ADME and PK/PD data of a series of compounds is described and led to the identification of promising pan-PIM inhibitors which validated our interest in the 7-azaindole scaffold and led us to pursue the identification of a clinical candidate.
View Article and Find Full Text PDFA solid phase combinatorial library was designed based on X-ray structures and in-silico models to explore an inducible S4+ pocket, which is formed by a simple side-chain rotation of Tyr95. This inducible S4+ pocket is unique to β-tryptase and does not exist for other trypsin-like serine proteases of interest. Therefore, inhibitors utilizing this pocket have inherent advantages for being selective against other proteases in the same family.
View Article and Find Full Text PDFA new series of novel mast cell tryptase inhibitors is reported, which features the use of an indole structure as the hydrophobic substituent on a m-benzylaminepiperidine template. The best members of this series display good in vitro activity and excellent selectivity against other serine proteases.
View Article and Find Full Text PDFTryptase is a serine protease found almost exclusively in mast cells. It has trypsin-like specificity, favoring cleavage of substrates with an arginine (or lysine) at the P1 position, and has optimal catalytic activity at neutral pH. Current evidence suggests tryptase beta is the most important form released during mast cell activation in allergic diseases.
View Article and Find Full Text PDFWe exploit the concept of using hydrogen bonds to link multiple ligands for maintaining simultaneous interactions with polyvalent binding sites. This approach is demonstrated by the syntheses and evaluation of pseudo-bivalent ligands as potent inhibitors of human beta-tryptase.
View Article and Find Full Text PDF