Inhibition of the Wnt antagonist sclerostin increases bone mass in patients with osteoporosis and in preclinical animal models. Here we show increased levels of the Wnt antagonist Dickkopf-1 (DKK-1) in animals treated with sclerostin antibody, suggesting a negative feedback mechanism that limits Wnt-driven bone formation. To test our hypothesis that co-inhibition of both factors further increases bone mass, we engineer a first-in-class bispecific antibody with single residue pair mutations in the Fab region to promote efficient and stable cognate light-heavy chain pairing.
View Article and Find Full Text PDFObjective: Sclerostin plays a major role in regulating skeletal bone mass, but its effects in articular cartilage are not known. The purpose of this study was to determine whether genetic loss or pharmacologic inhibition of sclerostin has an impact on knee joint articular cartilage.
Methods: Expression of sclerostin was determined in articular cartilage and bone tissue obtained from mice, rats, and human subjects, including patients with knee osteoarthritis (OA).
Purpose: To determine whether systemic treatment with AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, inhibits neovascular processes in animal models of ocular disease.
Methods: AMG 386 was tested in a laser-induced choroidal neovascularization (CNV) model in monkeys using fluorescein angiography. The biodistribution of (125)I-AMG 386 was determined in cynomolgus monkeys by whole-body autoradiography and radioanalysis of ocular tissues.
Introduction: Rats with adjuvant-induced arthritis (AIA) were necropsied on 14 occasions during preclinical, acute clinical and chronic clinical stages of AIA progression to characterize local (joint protein extracts) and systemic (serum) levels of mediators regulating inflammation and bone erosion in conjunction with lymphoid tissue-specific leukocyte kinetics.
Results: Systemic increases in alpha1 acid glycoprotein, tumor necrosis factor-alpha (TNFalpha), interleukin (IL)-17, transforming growth factor beta (TGFbeta), and chemokine (C-C motif) ligand 2 (CCL2) together with local IL-1alpha/beta and TGFbeta enrichment and local lymphoid hyperplasia preceded the onset of clinical disease and joint damage. Systemic upregulation of TNFalpha, IL-6, IL-17, TGFbeta, IL-18, CCL2, receptor activator of nuclear factor-kappabeta ligand (RANKL), and prostaglandin E(2) during acute and/or chronic AIA coincided with systemic leukocytosis and CD4+ T cell increase in blood and spleen.
The interleukin (IL)-1 family members IL-1alpha, -1beta, and -18 are potent inflammatory cytokines whose activities are dependent on heterodimeric receptors of the IL-1R superfamily, and which are regulated by soluble antagonists. Recently, several new IL-1 family members have been identified. To determine the role of one of these family members in the skin, transgenic mice expressing IL1F6 in basal keratinocytes were generated.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
September 2006
Purpose: To evaluate the activity of palifermin (rHuKGF) in a murine model of mucosal damage induced by a radiotherapy/chemotherapy (RT/CT) regimen mimicking treatment protocols used in head-and-neck cancer patients.
Methods And Materials: A model of mucosal damage induced by RT/CT was established by injecting female BDF1 mice with cisplatin (10 mg/kg) on Day 1; 5-fluorouracil (40 mg/kg/day) on Days 1-4, and irradiation (5 Gy/day) to the head and neck on Days 1-5. Palifermin was administered subcutaneously on Days -2 to 0 (5 mg/kg/day) and on Day 5 (5 mg/kg).
Mutations affecting the activity of the Wnt co-receptors LRP5 and LRP6 that cause alterations in skeletal biology confirmed the involvement of Wnt signaling in bone formation. We evaluated the potential role of Dkk1, an inhibitor of LRP5/6 activity, in bone formation by examining the normal expression pattern of Dkk1 in normal young mice and by assessing the consequences of osteoblast overexpression of Dkk1 in transgenic mice. Endogenous Dkk1 expression was detected primarily in osteoblasts and osteocytes.
View Article and Find Full Text PDFAngiopoietin-2 (Ang2) exhibits broad expression in the remodeling vasculature of human tumors but very limited expression in normal tissues, making it an attractive candidate target for antiangiogenic cancer therapy. To investigate the functional consequences of blocking Ang2 activity, we generated antibodies and peptide-Fc fusion proteins that potently and selectively neutralize the interaction between Ang2 and its receptor, Tie2. Systemic treatment of tumor-bearing mice with these Ang2-blocking agents resulted in tumor stasis, followed by elimination of all measurable tumor in a subset of animals.
View Article and Find Full Text PDF