Publications by authors named "James Posada"

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and RNA debris persist in viral reservoirs for weeks to months following infection, potentially triggering interferon production and chronic inflammation. RSLV-132 is a biologic drug composed of catalytically active human RNase1 fused to human IgG1 Fc and is designed to remain in circulation and digest extracellular RNA. We hypothesized that removal of SARS-CoV-2 viral RNA from latent reservoirs may improve inflammation, neuroinflammation, and fatigue associated with post-acute sequelae of SARS-CoV-2 infection (PASC).

View Article and Find Full Text PDF

Background: Circulating, extracellular RNA is the primary trigger of type I interferon in systemic lupus erythematosus (SLE), and interferon is known to play a central pathogenic role in the disease. RSLV-132 is a catalytically active human RNase molecule fused to human IgG1 Fc designed to digest RNA and thereby decrease the chronic inflammation associated with SLE. The drug was evaluated in a cohort of patients with SLE with moderate-severe cutaneous disease activity and the presence of RNA immune complexes.

View Article and Find Full Text PDF

Objective: To assess the safety and efficacy of RSLV-132, an RNase Fc fusion protein, in a phase II randomized, double-blind, placebo-controlled clinical trial in patients with primary Sjögren's syndrome (SS).

Methods: Thirty patients with primary SS were randomized to receive treatment with RSLV-132 or placebo intravenously once per week for 2 weeks, and then every 2 weeks for 12 weeks. Eight patients received placebo and 20 patients received RSLV-132 at a dose of 10 mg/kg.

View Article and Find Full Text PDF

The loss of tolerance and the presence of circulating autoantibodies directed against nuclear Ags is the hallmark of systemic lupus erythematosus (SLE). Many of these Ags are complexed with short, noncoding RNAs, such as U1 and Y1. The amount of U1 and Y1 RNA complexed with SLE patient Abs and immune complexes was measured in a cross-section of 228 SLE patients to evaluate the role of these RNA molecules within the known biochemical framework of SLE.

View Article and Find Full Text PDF

Thermosensitive interpenetrating gels were prepared by physically blending poly(N-isopropylacrylamide) (PNIPA) as the matrix and the following polysaccharides as interpenetrating phases: chitosan oligosaccharides (identified as QNAD and QNED) and soluble starch (STARCH). The molecular weight of the dispersed phase, the free water/bound water ratio and the thermosensitivity (transition temperature: LCST) of the gels were determined. It was found that these gels are pseudoplastic and that their viscosity depends on the molecular weight of the dispersed phase.

View Article and Find Full Text PDF

A cDNA encoding a novel, human, dual-specific protein phosphatase was identified in the Incyte data base. The open reading frame predicted a protein of 184 amino acids related to the Vaccinia virus VH1 and human VH1-related (VHR) phosphatases. Expression VHR-related MKPX (VHX) was highest in thymus, but also detectable in monocytes and lymphocytes.

View Article and Find Full Text PDF