Publications by authors named "James Polarek"

Purpose: Our aim was to determine the effect of a surgical technique on biomaterial implant performance, specifically graft retention.

Methods: Twelve mini pigs were implanted with cell-free, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) cross-linked recombinant human collagen type III (RHCIII) hydrogels as substitutes for donor corneal allografts using overlying sutures with or without human amniotic membrane (HAM) versus interrupted sutures with HAM. The effects of the retention method were compared as well as the effects of collagen concentration (13.

View Article and Find Full Text PDF

We developed cell-free implants, comprising carbodiimide crosslinked recombinant human collagen (RHC), to enable corneal regeneration by endogenous cell recruitment, to address the worldwide shortage of donor corneas. Patients were grafted with RHC implants. Over four years, the regenerated neo-corneas were stably integrated without rejection, without the long immunosuppression regime needed by donor cornea patients.

View Article and Find Full Text PDF

Corneas from human donors are used to replace damaged tissue and treat corneal blindness, but there is a severe worldwide shortage of donor corneas. We conducted a phase 1 clinical study in which biosynthetic mimics of corneal extracellular matrix were implanted to replace the pathologic anterior cornea of 10 patients who had significant vision loss, with the aim of facilitating endogenous tissue regeneration without the use of human donor tissue. The biosynthetic implants remained stably integrated and avascular for 24 months after surgery, without the need for long-term use of the steroid immunosuppression that is required for traditional allotransplantation.

View Article and Find Full Text PDF

The use of genetically engineered microorganisms is a cost-effective, scalable technology for the production of recombinant human collagen (rhC) and recombinant gelatin (rG). This review will discuss the use of yeast (Pichia pastoris, Saccharomyces cerevisiae, Hansenula polymorpha) and of bacteria (Escherichia coli, Bacillus brevis) genetically engineered for the production of rhC and rG. P.

View Article and Find Full Text PDF

Gelatin is used as a stabilizer in several vaccines. Allergic reactions to gelatins have been reported, including anaphylaxis. These gelatins are derived from animal tissues and thus represent a potential source of contaminants that cause transmissible spongiform encephalopathies.

View Article and Find Full Text PDF

Collagen is the main structural protein in vertebrates. It plays an essential role in providing a scaffold for cellular support and thereby affecting cell attachment, migration, proliferation, differentiation, and survival. As such, it also plays an important role in numerous approaches to the engineering of human tissues for medical applications related to tissue, bone, and skin repair and reconstruction.

View Article and Find Full Text PDF

The tools of recombinant protein expression are now being used to provide recombinant sources of both collagen and gelatin. The primary focus of this review is to discuss alternatives to bovine collagen for biomedical applications. Several recombinant systems have been developed for production of human sequence collagens.

View Article and Find Full Text PDF