Objective: Mismatch repair (MMR) deficient (dMMR) colon cancer (CC) is distinct from MMR proficient (pMMR) CC, yet the impact of MMR status on radiological staging is unclear. The purpose of this study was to investigate how MMR status impacts CC CT staging.
Methods: We retrospectively compared CT staging accuracy between dMMR and pMMR CC patients undergoing curative resection.
Patients with cancer are at increased risk of hospitalisation and mortality following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the SARS-CoV-2 phenotype evolution in patients with cancer since 2020 has not previously been described. We therefore evaluated SARS-CoV-2 on a UK populationscale from 01/11/2020-31/08/2022, assessing case-outcome rates of hospital assessment(s), intensive care admission and mortality.
View Article and Find Full Text PDFThe COVID-19 pandemic has led to a range of novel and adaptive research designs. In this perspective, we use our experience coordinating the National COVID Cancer Antibody Survey to demonstrate how a balance between speed and integrity can be achieved within a hyper-accelerated study design. Using the COVID-19 pandemic as an example, we show this approach is necessary in the face of uncertain and evolving situations wherein reliable information is needed in a timely fashion to guide policy.
View Article and Find Full Text PDFAim: FOxTROT1 established a new standard of care for managing locally advanced colon cancer (CC) with neoadjuvant chemotherapy (NAC). Six weeks of neoadjuvant oxaliplatin and fluoropyrimidine (OxFp) chemotherapy was associated with greater 2-year disease-free survival (DFS) when compared with proceeding straight to surgery (STS). There is now a need to refine the use of NAC and identify those most likely to benefit.
View Article and Find Full Text PDFImportance: Accurate identification of patient groups with the lowest level of protection following COVID-19 vaccination is important to better target resources and interventions for the most vulnerable populations. It is not known whether SARS-CoV-2 antibody testing has clinical utility for high-risk groups, such as people with cancer.
Objective: To evaluate whether spike protein antibody vaccine response (COV-S) following COVID-19 vaccination is associated with the risk of SARS-CoV-2 breakthrough infection or hospitalization among patients with cancer.
Purpose: People living with cancer and haematological malignancies are at an increased risk of hospitalisation and death following infection with acute respiratory syndrome coronavirus 2. Coronavirus third dose vaccine boosters are proposed to boost waning immune responses in immunocompromised individuals and increase coronavirus protection; however, their effectiveness has not yet been systematically evaluated.
Methods: This study is a population-scale real-world evaluation of the United Kingdom's third dose vaccine booster programme for cancer patients from 8th December 2020 to 7th December 2021.
Background: People with cancer are at increased risk of hospitalisation and death following infection with SARS-CoV-2. Therefore, we aimed to conduct one of the first evaluations of vaccine effectiveness against breakthrough SARS-CoV-2 infections in patients with cancer at a population level.
Methods: In this population-based test-negative case-control study of the UK Coronavirus Cancer Evaluation Project (UKCCEP), we extracted data from the UKCCEP registry on all SARS-CoV-2 PCR test results (from the Second Generation Surveillance System), vaccination records (from the National Immunisation Management Service), patient demographics, and cancer records from England, UK, from Dec 8, 2020, to Oct 15, 2021.
Background: Periprosthetic fractures of the distal femur above a total knee arthroplasty (TKA) have traditionally been managed by locking compression plating (LCP). This technique is technically demanding and is associated with high rates of non-union and revision. More recently, retrograde intramedullary nailing (RIMN) has been proposed as an acceptable alternative.
View Article and Find Full Text PDFHypoxia-inducible transcription factors (HIFs) directly dictate the expression of multiple RNA species including novel and as yet uncharacterized long noncoding transcripts with unknown function. We used pan-genomic HIF-binding and transcriptomic data to identify a novel long noncoding RNA oncoding ntergenic o-nduced transcript (NICI) on chromosome 12p13.31 which is regulated by hypoxia via HIF-1 promoter-binding in multiple cell types.
View Article and Find Full Text PDFOnline health care communities are commonplace on social media. This report investigates the engagement and use of breast cancer-specific hashtags: #BCSM and #breastcancer. With over 5 million Twitter impressions weekly and increased engagement around academic meetings and news releases, these communities connect a global population.
View Article and Find Full Text PDFPurpose: Currently, there are only a few software tools designed to assist physicians to translate molecular abnormalities in the cancer genome into potential treatment options. There is a pressing need to develop software to reliably identify known targeted therapies and experimental treatments for patients on the basis of the results of tumor DNA sequencing.
Methods: The TQuest platform includes a data layer, data acquisition layer, search engine, and user interface.
Un-physiological activation of hypoxia inducible factor (HIF) is an early event in most renal cell cancers (RCC) following inactivation of the von Hippel-Lindau tumor suppressor. Despite intense study, how this impinges on cancer development is incompletely understood. To test for the impact of genetic signals on this pathway, we aligned human RCC-susceptibility polymorphisms with genome-wide assays of HIF-binding and observed highly significant overlap.
View Article and Find Full Text PDFNucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and but are absent in plants and yeast.
View Article and Find Full Text PDFPancreatic adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death in the United States. PDAC is difficult to manage effectively, with a five-year survival rate of only 5%. PDAC is largely driven by activating mutations, and as such, cannot be directly targeted with therapeutic agents that affect the activated protein.
View Article and Find Full Text PDFA promising alternative to address the problem of acquired drug resistance is to rely on combination therapies. Identification of the right combinations is often accomplished through trial and error, a labor and resource intensive process whose scale quickly escalates as more drugs can be combined. To address this problem, we present a broad computational approach for predicting synergistic combinations using easily obtainable single drug efficacy, no detailed mechanistic understanding of drug function, and limited drug combination testing.
View Article and Find Full Text PDFGenetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene.
View Article and Find Full Text PDFClear cell renal cell carcinoma (ccRCC) is characterized by loss of function of the von Hippel-Lindau tumour suppressor (VHL) and unrestrained activation of hypoxia-inducible transcription factors (HIFs). Genetic and epigenetic determinants have an impact on HIF pathways. A recent genome-wide association study on renal cancer susceptibility identified single-nucleotide polymorphisms (SNPs) in an intergenic region located between the oncogenes MYC and PVT1.
View Article and Find Full Text PDFHypoxia-inducible factor (HIF) directs an extensive transcriptional cascade that transduces numerous adaptive responses to hypoxia. Pan-genomic analyses, using chromatin immunoprecipitation and transcript profiling, have revealed large numbers of HIF-binding sites that are generally associated with hypoxia-inducible transcripts, even over long chromosomal distances. However, these studies do not define the specific targets of HIF-binding sites and do not reveal how induction of HIF affects chromatin conformation over distantly connected functional elements.
View Article and Find Full Text PDFInterpretation of complex cancer genome data, generated by tumor target profiling platforms, is key for the success of personalized cancer therapy. How to draw therapeutic conclusions from tumor profiling results is not standardized and may vary among commercial and academically-affiliated recommendation tools. We performed targeted sequencing of 315 genes from 75 metastatic breast cancer biopsies using the FoundationOne assay.
View Article and Find Full Text PDFTargeting anti-apoptotic proteins can sensitize tumor cells to conventional chemotherapies or other targeted agents. Antagonizing the Inhibitor of Apoptosis Proteins (IAPs) with mimetics of the pro-apoptotic protein SMAC is one such approach. We used sensitization compound screening to uncover possible agents with the potential to further sensitize lung adenocarcinoma cells to the SMAC mimetic Debio 1143.
View Article and Find Full Text PDFBackground: The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown.
View Article and Find Full Text PDFA crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/β DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1.
View Article and Find Full Text PDF