Biol Psychiatry Cogn Neurosci Neuroimaging
November 2024
Background: The pathophysiology of attention-deficit/hyperactivity disorder (ADHD) is characterized by atypical brain network organization and dynamics. Although functional brain networks adaptively reconfigure across cognitive contexts, previous studies have largely focused on network dysfunction during the resting-state. This preliminary study examined how functional brain network organization and dynamics flexibly reconfigure across rest and two cognitive control tasks with different cognitive demands in 30 children with ADHD and 36 typically developing (TD) children (8-12 years).
View Article and Find Full Text PDFThe HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. The acquisition of multimodal magnetic resonance-based brain development data is central to the study's core protocol. However, application of Magnetic Resonance Imaging (MRI) methods in this population is complicated by technical challenges and difficulties of imaging in early life.
View Article and Find Full Text PDFObjectives: Lemniscal (motor-related) and spinothalamic (neuropathic pain-related) somatosensory abnormalities affect different subsets of adults with cerebral palsy (CP). Lemniscal/motor abnormalities are associated with posterior thalamic radiation white matter disruption in individuals with CP and white matter injury. We tested the hypothesis that neuropathic pain symptoms in this population are rather associated with injury of the somatosensory (posterior group nuclei) thalamus.
View Article and Find Full Text PDFThe asynchrony theory of dyslexia postulates weaker visual (orthographical processing) and auditory (phonological processing) network synchrony in dyslexic readers. The weaker visual-auditory network synchronization is suggested to contribute to slow processing speed, which supports cognitive control, contributing to single-word reading difficulty and lower reading fluency. The current study aims to determine the neurobiological signature for this theory and to examine if prompting enhanced reading speed through deleted text is associated with a greater synchronization of functional connectivity of the visual and auditory networks in children with dyslexia and typical readers (TRs).
View Article and Find Full Text PDFThe hierarchically organized structures of the medial temporal lobe are critically important for episodic memory function. Accumulating evidence suggests dissociable information processing pathways are maintained throughout these structures including in the medial and lateral entorhinal cortex. Cortical layers provide an additional dimension of dissociation as the primary input to the hippocampus derives from layer 2 neurons in the entorhinal cortex, whereas the deeper layers primarily receive output from the hippocampus.
View Article and Find Full Text PDFIn this manuscript, we consider the problem of relating functional connectivity measurements viewed as statistical distributions to outcomes. We demonstrate the utility of using the distribution of connectivity on a study of resting-state functional magnetic resonance imaging association with an intervention. The method uses the estimated density of connectivity between nodes of interest as a functional covariate.
View Article and Find Full Text PDFBackground: Compared to unilateral cerebral palsy (CP), less is known about brain reorganization and plasticity in bilateral CP especially in relation or response to motor training. The few trials that reported brain imaging results alongside functional outcomes include a handful of studies in unilateral CP, and one pilot trial of three children with bilateral CP. This study is the first locomotor training randomized controlled trial (RCT) in bilateral CP to our knowledge reporting brain imaging outcomes.
View Article and Find Full Text PDFFrontal corticostriatal circuits (FCSC) are involved in self-regulation of cognition, emotion, and motor function. While these circuits are implicated in attention-deficit/hyperactivity disorder (ADHD), the literature establishing FCSC associations with ADHD is inconsistent. This may be due to study variability in considerations of how fMRI motion regression was handled between groups, or study specific differences in age, sex, or the striatal subregions under investigation.
View Article and Find Full Text PDFPsilocybin has shown promise for the treatment of mood disorders, which are often accompanied by cognitive dysfunction including cognitive rigidity. Recent studies have proposed neuropsychoplastogenic effects as mechanisms underlying the enduring therapeutic effects of psilocybin. In an open-label study of 24 patients with major depressive disorder, we tested the enduring effects of psilocybin therapy on cognitive flexibility (perseverative errors on a set-shifting task), neural flexibility (dynamics of functional connectivity or dFC via functional magnetic resonance imaging), and neurometabolite concentrations (via magnetic resonance spectroscopy) in brain regions supporting cognitive flexibility and implicated in acute psilocybin effects (e.
View Article and Find Full Text PDFDefault mode network (DMN) dysfunction is theorized to play a role in attention lapses and task errors in children with attention-deficit/hyperactivity disorder (ADHD). In ADHD, the DMN is hyperconnected to task-relevant networks, and both increased functional connectivity and reduced activation are related to poor task performance. The current study extends existing literature by considering interactions between the DMN and task-relevant networks from a brain network perspective and by assessing how these interactions relate to response control.
View Article and Find Full Text PDFPrevious studies in children with attention-deficit/hyperactivity disorder (ADHD) have observed functional brain network disruption on a whole-brain level, as well as on a sub-network level, particularly as related to the default mode network, attention-related networks, and cognitive control-related networks. Given behavioral findings that children with ADHD have more difficulty sustaining attention and more extreme moment-to-moment fluctuations in behavior than typically developing (TD) children, recently developed methods to assess changes in connectivity over shorter time periods (i.e.
View Article and Find Full Text PDFA network of myenteric interstitial cells of Cajal in the corpus of the stomach serves as its "pacemaker", continuously generating a ca 0.05 Hz electrical slow wave, which is transmitted to the brain chiefly by vagal afferents. A recent study combining resting-state functional MRI (rsfMRI) with concurrent surface electrogastrography (EGG), with cutaneous electrodes placed on the epigastrium, found 12 brain regions with activity that was significantly phase-locked with this gastric basal electrical rhythm.
View Article and Find Full Text PDFPsilocybin is a classic psychedelic compound that may have efficacy for the treatment of mood and substance use disorders. Acute psilocybin effects include reduced negative mood, increased positive mood, and reduced amygdala response to negative affective stimuli. However, no study has investigated the long-term, enduring impact of psilocybin on negative affect and associated brain function.
View Article and Find Full Text PDFBackground: Huntington's disease (HD) is a progressive neurodegenerative disorder. The striatum is one of the first brain regions that show detectable atrophy in HD. Previous studies using functional magnetic resonance imaging (fMRI) at 3 tesla (3 T) revealed reduced functional connectivity between striatum and motor cortex in the prodromal period of HD.
View Article and Find Full Text PDFIn recent years, a number of studies have reported on the existence of time-varying functional connectivity (TVC) in resting-state functional magnetic resonance imaging (rs-fMRI) data. The sliding-window technique is currently one of the most commonly used methods to estimate TVC. Although previous studies have shown that autocorrelation can negatively impact estimates of static functional connectivity, its impact on TVC estimates is not well known at this time.
View Article and Find Full Text PDFThe study of functional brain networks has grown rapidly over the past decade. While most functional connectivity (FC) analyses estimate one static network structure for the entire length of the functional magnetic resonance imaging (fMRI) time series, recently there has been increased interest in studying time-varying changes in FC. Hidden Markov models (HMMs) have proven to be a useful modeling approach for discovering repeating graphs of interacting brain regions (brain states).
View Article and Find Full Text PDFThe thalamus is a small brain structure that relays neuronal signals between subcortical and cortical regions. Abnormal thalamocortical connectivity in schizophrenia has been reported in previous studies using blood-oxygenation-level-dependent (BOLD) functional MRI (fMRI) performed at 3T. However, anatomically the thalamus is not a single entity, but is subdivided into multiple distinct nuclei with different connections to various cortical regions.
View Article and Find Full Text PDFReliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g.
View Article and Find Full Text PDFPurpose To assess whether early brain functional connectivity is associated with functional recovery 1 year after cardiac arrest (CA). Materials and Methods Enrolled in this prospective multicenter cohort were 46 patients who were comatose after CA. Principal outcome was cerebral performance category at 12 months, with favorable outcome (FO) defined as cerebral performance category 1 or 2.
View Article and Find Full Text PDFBaseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO ).
View Article and Find Full Text PDFAt present, presurgical functional mapping is the most prevalent clinical application of functional magnetic resonance imaging (fMRI). Signal dropouts and distortions caused by susceptibility effects in the current standard echo planar imaging (EPI)-based fMRI images are well-known problems and pose a major hurdle for the application of fMRI in several brain regions, many of which are related to language mapping in presurgical planning. Such artifacts are particularly problematic in patients with previous surgical resection cavities, craniotomy hardware, hemorrhage, and vascular malformation.
View Article and Find Full Text PDFDue to the dynamic, condition-dependent nature of brain activity, interest in estimating rapid functional connectivity (FC) changes that occur during resting-state functional magnetic resonance imaging (rs-fMRI) has recently soared. However, studying dynamic FC is methodologically challenging, due to the low signal-to-noise ratio of the blood oxygen level dependent (BOLD) signal in fMRI and the massive number of data points generated during the analysis. Thus, it is important to establish methods and summary measures that maximize reliability and the utility of dynamic FC to provide insight into brain function.
View Article and Find Full Text PDFPurpose: We aimed to identify non-invasive imaging parameters that can serve as biomarkers for the integrity of the spinal cord, which is paramount to neurological function. Diffusion tensor imaging (DTI) indices are sensitive to axonal and myelin damage, and have strong potential to serve as such biomarkers. However, averaging DTI indices over large regions of interest (ROIs), a common approach to analyzing the images of injured spinal cord, leads to loss of subject-specific information.
View Article and Find Full Text PDFIndependent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects.
View Article and Find Full Text PDFThe blood-oxygenation-level-dependent (BOLD) effect reflects ensemble changes in several physiological parameters such as cerebral blood volume (CBV), blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO). Quantitative BOLD approaches have been developed to estimate CMRO dynamics from BOLD, CBF and CBV responses, generally using separate scans. The ability to detect changes in these parameters in a single scan would shorten the total scan time and reduce temporal variations in physiology or neuronal responses.
View Article and Find Full Text PDF