Publications by authors named "James Pavlik"

Rationale And Objectives: Current wire localization compression paddles provide a limited access window with no compression in this window. We describe a new compression paddle that addresses these issues and report on preliminary patient testing.

Materials And Methods: Four mechanical engineering students collaborated with a medical physicist, a radiographer, and two radiologists.

View Article and Find Full Text PDF

The six isomeric trideuteriopyridines and the three isomeric tetradeuteriopyridines undergo phototransposition upon S0 --> S2 (pi, pi*) excitation in the vapor phase at 254 nm. On the basis of the products formed, the six trideuteriopyridine isomers can be divided into two triads. Similarly, the three isomeric tetradeuteriopyridines also constitute a triad.

View Article and Find Full Text PDF

The three isomeric methylpyridines and the three isomeric cyanopyridines each constitute a photochemical triad. Irradition of each methylpyridine or each cyanopyridine in the vapor phase at 254 nm results in the formation of the other two isomers as primary photoproducts. Dideuteration of the 2-substituted or 3-substituted methyl or cyanopyridines expanded each triad to a pentad.

View Article and Find Full Text PDF

Irradiation of 5-phenyl-1,2,4-thiadiazole (6) resulted in the formation of benzonitrile (5), 3-phenyl-1,2,4-thiadiazole (4), phenyl- and diphenyl-1,3,5-triazines (7 and 8), and a trace quantity of diphenyl-1,2,4-thiadiazole (9). The formation of 4,5, 7, and 8 can be explained in terms of photoinduced electrocyclic ring closure resulting in the formation of an intermediate 4-phenyl-1,3-diaza-5-thiabicyclo[2.1.

View Article and Find Full Text PDF

Direct irradiation of 1-methyl-4-phenylpyrazole (2) in methanol results in regiospecific phototransposition to 1-methyl-4-phenylimidazole (4) and in photocleavage to (E)/(Z)-3-(N-methylamino)-2-phenylpropenenitrile (5) and (E)/(Z)-2-(N-methylamino)-1-phenylethenyl isocyanide (6). Deuterium labeling confirms that the phototransposition occurs via the P(4) permutation pathway. Separate experiments show that 5 and 6 undergo (Z) --> (E) isomerization and photocyclization to imidazole 4.

View Article and Find Full Text PDF