Aneuploidy, defined as whole-chromosome gain or loss, causes cellular stress but, paradoxically, is a frequent occurrence in cancers. Here, we investigate why ∼50% of Ewing sarcomas, driven by the fusion oncogene, harbor chromosome 8 gains. Expression of the fusion in primary cells causes replication stress that can result in cellular senescence.
View Article and Find Full Text PDFFront Health Serv Manage
December 2019
The challenges that healthcare leaders face are many, and workforce challenges are among the most important. For most healthcare entities, the workforce is their largest expense. Fortunately, many issues can be avoided with proper planning and review.
View Article and Find Full Text PDFFamily-based selective breeding can be an effective strategy for controlling diseases in aquaculture. This study aimed to estimate (co)variance components for resistance to bacterial cold water disease (BCWD) and columnaris disease (CD) in two unrelated rainbow trout nucleus breeding populations: the USDA, ARS, National Center for Cool and Cold Water Aquaculture odd-year line (ARS-Fp-R), which has been subjected to five generations of selection for improved resistance to BCWD, and the Troutlodge, Inc., May-spawning odd-year line (TLUM), which has been selected for improved growth performance but not for disease resistance.
View Article and Find Full Text PDFPreviously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared.
View Article and Find Full Text PDFBacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work.
View Article and Find Full Text PDFBackground: Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation.
Methods: We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model.
Purpose: To review radiation fractionation and chemotherapy trials for patients undergoing organ preservation therapy for locally advanced head and neck squamous cell carcinoma.
Methods And Materials: Radiation therapy fractionation and chemotherapy trial results as well as historical evidence are systematically reviewed.
Results: Trial results, which involve nearly 30,000 patients, have been interpreted, compared, and presented in a structured manner to demonstrate the changing approaches in treatment over the years from the 1960s to the present.
Recently, we showed that the fused chorismate-utilizing enzyme from the antibiotic-producing soil bacterium Streptomyces venezuelae is an anthranilate synthase (designated SvAS), not a 2-amino-2-deoxyisochorismate (ADIC) synthase, as was predicted based on its amino acid sequence similarity to the phenazine biosynthetic enzyme PhzE (an ADIC synthase). Here, we report the characterization of SvAS using steady-state kinetics, gel filtration chromatography, and laser light scattering. The recombinant His-tagged enzyme has Michaelis constants Km with respect to substrates chorismate and glutamine of 8.
View Article and Find Full Text PDFThe phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade.
View Article and Find Full Text PDFThe diversity of useful compounds produced by plant secondary metabolism has stimulated broad systems biology approaches to identify the genes involved in their biosynthesis. Systems biology studies in non-model plants pose interesting but addressable challenges, and have been greatly facilitated by the ability to grow and maintain plants, develop laboratory culture systems, and profile key metabolites in order to identify critical genes involved their biosynthesis. In this chapter we describe a suite of approaches that have been useful in Actaea racemosa (L.
View Article and Find Full Text PDFTo date, lacking of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing effective cell-based therapies against a wide range of neurological disorders. Derivation of human embryonic stem cells (hESCs) provides a powerful tool to investigate the molecular controls in human embryonic neurogenesis as well as an unlimited source to generate the diversity of human neuronal cell types in the developing CNS for repair. However, realizing the developmental and therapeutic potential of hESCs has been hindered by conventional multi-lineage differentiation of pluripotent cells, which is uncontrollable, inefficient, highly variable, difficult to reproduce and scale-up.
View Article and Find Full Text PDFThe structure of PA5508 from Pseudomonas aeruginosa, a glutamine synthetase (GS) homologue, has been determined at 2.5 Å. Surprisingly, PA5508 forms single hexameric rings rather than the stacked double rings that are characteristic of GS.
View Article and Find Full Text PDFPabB, aminodeoxychorismate synthase, is the chorismic acid binding component of the heterodimeric PabA-PabB complex that converts chorismic acid to 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folic acid in microorganisms. The second component, a glutamine amidotransferase subunit, PabA, generates ammonia that is channeled to the PabB active site where it attacks C4 of a chorismate-derived intermediate that is covalently bound, through C2, to an active site lysine residue. The presence of a PIKGT motif was, until recently, believed to allow discrimination of PabB enzymes from the closely related enzyme anthranilate synthase, which typically contains a PIAGT active site motif and does not form a covalent enzyme-substrate intermediate with chorismate.
View Article and Find Full Text PDFRev Environ Contam Toxicol
December 2012
Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health.
View Article and Find Full Text PDFProtein-protein interactions identified through high-throughput proteomics efforts continue to advance our understanding of the protein interactome. In addition to highly specific protein-protein interactions, it is becoming increasingly more common for yeast two-hybrid, pull-down assays, and other proteomics techniques to identify multiple protein ligands that bind to the same target protein. A resulting challenge is to accurately characterize the assembly of these multiprotein complexes and the competition among multiple protein ligands for a given target.
View Article and Find Full Text PDFWe introduce the wetting barrier ratchet, a digital microfluidic technology for directed drop transport in an open air environment. Cyclic drop footprint oscillations initiated by orthogonal vibrations as low as 37 μm in amplitude at 82 Hz are rectified into fast (mm/s) and controlled transport along a fabricated ratchet design. The ratchet is made from a simple wettability pattern atop a microscopically flat surface consisting of periodic semi-circular hydrophilic features on a hydrophobic background.
View Article and Find Full Text PDFTo date, lacking of a clinically-suitable human cardiac cell source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human myocardium. Pluripotent Human Embryonic Stem Cells (hESCs) proffer unique revenue to generate a large supply of cardiac lineage-committed cells as human myocardial grafts for cell-based therapy. Due to the prevalence of heart disease worldwide and acute shortage of donor organs or human myocardial grafts, there is intense interest in developing hESC-based therapy for heart disease and failure.
View Article and Find Full Text PDFIn 2009, the Royal College of General Practitioners (RCGP) in the UK created the First5® initiative to support new GPs through the first years of independent practice. For new GPs, finishing training and taking the first steps into a career in family medicine is an exciting but also challenging time. The RCGP and fellow Wonca organizations are well placed to support young colleagues through this transition period.
View Article and Find Full Text PDFTo date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart.
View Article and Find Full Text PDFThere is a large unfulfilled need for a clinically-suitable human neuronal cell source for repair or regeneration of the damaged central nervous system (CNS) structure and circuitry in today's healthcare industry. Cell-based therapies hold great promise to restore the lost nerve tissue and function for CNS disorders. However, cell therapies based on CNS-derived neural stem cells have encountered supply restriction and difficulty to use in the clinical setting due to their limited expansion ability in culture and failing plasticity after extensive passaging(1-3).
View Article and Find Full Text PDFThe concept of First5 recognises the challenges faced by GPs at the end of training and comprises five pillars, which could help to support new GPs through the first 5 years of independent practice. The world of general practice is constantly changing and it is important that new GPs can be supported to develop the confidence and skills required to meet the demands of the new healthcare world.
View Article and Find Full Text PDFThe structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound D-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo.
View Article and Find Full Text PDFThe NHS could not function effectively without the aid and support of specialist recruitment consultancies, yet recruiters are portrayed as 'bad guys'. This image should be changed.
View Article and Find Full Text PDFPseudomonas quinolone signal (PQS), 2-heptyl-3-hydroxy-4-quinolone, is an intercellular alkyl quinolone signaling molecule produced by the opportunistic pathogen Pseudomonas aeruginosa. Alkyl quinolone signaling is an atypical system that, in P. aeruginosa, controls the expression of numerous virulence factors.
View Article and Find Full Text PDFIn addition to nutrients, poultry are fed trace elements (e.g., As) for therapeutic purposes.
View Article and Find Full Text PDF