Nucleosides Nucleotides Nucleic Acids
December 2012
A synthesis has been developed providing nucleotide dimers comprising natural or unnatural nucleoside residues. A ribonucleoside 5'-phosphorimidazolide is added to a nucleoside adsorbed on montmorillonite at neutral pH with the absence of protecting groups. Approximately 30% of the imidazolide is converted into each 2'-5' dimer and 3'-5' dimer with the rest hydrolyzed to the 5'-monophosphate.
View Article and Find Full Text PDFThe montmorillonite-catalyzed reactions of D, L-ImpA with D, L-ImpU generates RNA-like oligomers. The structures of the dimers to pentamers were investigated and homochiral products were identified in greater amounts than would be expected if theoretical amounts of each were formed. The homochirality increased from 64% to 97% as the chain length increased from dimers to pentamers.
View Article and Find Full Text PDFMetal is the standard desorption platform for MALDI-MS but other surfaces have been shown to offer advantages for particular types of analytes or applications. One such substrate is fused silica, which has been employed for matrix-free detection of low mass analytes and for affinity MALDI-MS in which binding ligands are immobilized at the fused silica surface. The present work reports improved MALDI-MS detection of RNA oligonucleotides, including polyA, polyU, and polyA/U, at the high end of the mass range when unmodified fused silica is used instead of stainless steel as the MALDI target.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2011
The Na(+)-montmorillonite-catalyzed reactions of 5'-phosphorimidazolides of nucleosides generates RNA oligomers. The question arises as to how chiral selectivity was introduced into this biopolymer from a simple chemical system. We have demonstrated homochiral selection in quaternary reactions of a racemic mixture of D,L-ImpA and D,L-ImpU on Na(+)-montmorillonite.
View Article and Find Full Text PDFSelective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate.
View Article and Find Full Text PDFThe montmorillonite clay-catalyzed reactions of nucleotides generate oligomers as long as 50-mers. The extent of catalysis depends on the magnitude of the negative charge on the montmorillonite lattice and the number of cations associated with it. When cations in raw montmorillonites are replaced by sodium ions, the resulting Na(+)-montmorillonite does not catalyze oligomer formation because they saturate the interlayers between the platelets of montmorillonites, which blocks the binding of the activated monomers.
View Article and Find Full Text PDFOrig Life Evol Biosph
February 2007
The montmorillonite-catalyzed reactions of the 5'-phosphorimidazolides of D, L-adenosine (D, L-ImpA) (Figure 1a. N = A, R = H) and D, L-uridine (Figure 1a., N = U, R = H) yields oligomers that were as long as 7 mers and 6 mers, respectively.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2006
Large deposits of montmorillonite are present on the Earth today and it is believed to have been present at the time of the origin of life and has recently been detected on Mars. It is formed by aqueous weathering of volcanic ash. It catalyses the formation of oligomers of RNA that contain monomer units from 2 to 30-50.
View Article and Find Full Text PDFActivated mononucleotides oligomerize in the presence of montmorillonite clay to form RNA oligomers. In the present study, effects of salts, temperature and pH on the clay-catalyzed synthesis of RNA oligomers were investigated. This reaction is favored by relatively high concentration of salts, such as 1 M NaCl.
View Article and Find Full Text PDF5'-Nucleotides of A and U with the phosphate activated with 1-methyladenine generate RNA oligomers containing 40-50 monomers in 1 day in reactions catalyzed by montmorillonite. The corresponding monomers of C give oligomers that are 20-25-mers in length after a 9-day reaction. It was not possible to determine the chain lengths of the oligomers of G since they did not give well-defined bands on gel electrophoresis.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2006
Oligonucleotides synthesized on a montmorillonite catalyst were analyzed directly. By mixing the catalyst with a matrix (2,4,6-trihydroxyacetophenone or 6-aza-2-thiothymine) and dibasic ammonium citrate, higher molecular weight products were detected compared with "classical" methods such as gel electrophoresis and HPLC with UV as a detector. The oligomers (30-mers and higher) were detected by mass spectrometry even though their concentration was less than 10(-4)% of the total content of the RNA.
View Article and Find Full Text PDFAdenosine-5'-methylphosphate (MepA) initiates the oligomerization of the 5'-phosphorimidazolide of uridine (ImpU) in the presence of montmorillonite clay. Longer oligomers form because the 5'-phosphate is blocked with a methyl group that prevents the formation of cyclic- and pyrophosphate-containing compounds. The MepA initiates 69-84% of the 5-9 charge oligomers, respectively.
View Article and Find Full Text PDFOrig Life Evol Biosph
February 2003
Monovalent ([Na+] > 10 mM) and divalent ([Ca2+], [Mg2+] > 1.0 mM) cations induced the precipitation of nucleic acid molecules. In the presence of clay minerals (montmorillonite and kaolinite), there was adsorption instead of precipitation.
View Article and Find Full Text PDFRNA oligomers greater than 35-40 mers in length form in one day in the montmorillonite clay-catalyzed reaction of unblocked RNA monomers at 25 degrees C in aqueous solution.
View Article and Find Full Text PDFThe possible role of catalysis in forming a limited number of RNAs from activated monomers is investigated by examining the sequence- and regioselectivity in the montmorillonite-catalyzed formation of RNA dimers and trimers. The reactivity of A was similar to that of G, and C was comparable in reactivity to U. Yet the reactivity of the purine nucleotides differed from that of the pyrimidines.
View Article and Find Full Text PDFElongation of the primer 32pdA(pdA)8pA proceeds by the reaction of the 5'-phosphorimidazolides of adenosine and uridine in the presence of montmorillonite clay. Daily addition of the activated nucleotides for up to 14 days results in the formation of 40-50 mers using the 5'-phosphorimidazolide of adenosine (ImpA) and 25-30 mers using the 5'-phosphorimidazolide of uridine (ImpU). The limitation on the lengths of the chains formed is not due to the inhibitors formed since the same chain lengths were formed using 2-3 times the amount of montmorillonite catalyst.
View Article and Find Full Text PDF