Publications by authors named "James P Armstrong"

In developmental biology, gradients of bioactive signals direct the formation of structural transitions in tissue that are key to physiological function. Failure to reproduce these native features in an in vitro setting can severely limit the success of bioengineered tissue constructs. In this report, we introduce a facile and rapid platform that uses magnetic field alignment of glycosylated superparamagnetic iron oxide nanoparticles, pre-loaded with growth factors, to pattern biochemical gradients into a range of biomaterial systems.

View Article and Find Full Text PDF

In the past decade, extracellular vesicles (EVs) have emerged as a key cell-free strategy for the treatment of a range of pathologies, including cancer, myocardial infarction, and inflammatory diseases. Indeed, the field is rapidly transitioning from promising in vitro reports toward in vivo animal models and early clinical studies. These investigations exploit the high physicochemical stability and biocompatibility of EVs as well as their innate capacity to communicate with cells via signal transduction and membrane fusion.

View Article and Find Full Text PDF

Many important biomedical applications, such as cell imaging and remote manipulation, can be achieved by labeling cells with superparamagnetic iron oxide nanoparticles (SPIONs). Achieving sufficient cellular uptake of SPIONs is a challenge that has traditionally been met by exposing cells to elevated concentrations of SPIONs or by prolonging exposure times (up to 72 hr). However, these strategies are likely to mediate toxicity.

View Article and Find Full Text PDF

The modification of protein surfaces employing cationic and anionic species enables the assembly of these biomaterials into highly sophisticated hierarchical structures. Such modifications can allow bioconjugates to retain or amplify their functionalities under conditions in which their native structure would be severely compromised. In this work, we assess the effect of this type of bioconjugation on the redox properties of two model heme proteins, that is, cytochrome c (CytC) and myoglobin (Mb).

View Article and Find Full Text PDF

The ability to rationally manipulate and augment the cytoplasmic membrane can be used to overcome many of the challenges faced by conventional cellular therapies and provide innovative opportunities when combined with new biotechnologies. The focus of this review is on emerging strategies used in cell functionalization, highlighting both pioneering approaches and recent developments. These will be discussed within the context of future directions in this rapidly evolving field.

View Article and Find Full Text PDF

3D tissue printing with adult stem cells is reported. A novel cell-containing multicomponent bioink is used in a two-step 3D printing process to engineer bone and cartilage architectures.

View Article and Find Full Text PDF

Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated.

View Article and Find Full Text PDF

DNA chains and their movement in solvent may now be controlled simply by surfactant binding and the switching "on" and "off" of a magnetic field adding a new paradigm to the study and control, condensation and manipulation of DNA (and other biomolecules). Such control is essential for biotechnological applications such as transfection and the regulation of gene suppression, as well as in materials science concerning soft molecular self-assemblies.

View Article and Find Full Text PDF

Eight common imidazolium based ionic liquids have been successfully evaporated in ultra-high vacuum, their vapours analysed by line of sight mass spectrometry and their heats (enthalpy) of vapourisation determined. They were found to evaporate as ion pairs, with heats of vapourisation which depend primarily on the coulombic interactions within the liquid phase and the gas phase ion pair. An electrostatic model is presented relating the heats of vapourisation to the molar volumes of the ionic liquids.

View Article and Find Full Text PDF