Publications by authors named "James Osborne"

A model using the rigid body multi-cellular framework (RBMCF) is implemented to investigate the mechanisms of buckling of an epithelial monolayer. Specifically, the deformation of a monolayer of epithelial cells which are attached to a basement membrane and the surrounding stromal tissue. The epithelial monolayer, supporting basement membrane and stromal tissue are modelled using two separate vertex dynamics models (one for the epithelial monolayer layer and one for the basement membrane and stromal tissue combined) and interactions between the two are considered using the RBMCF to ensure biologically realistic interactions.

View Article and Find Full Text PDF

Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of "OPM-MEG" systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost.

View Article and Find Full Text PDF

Unlabelled: The apiculate yeast genus has appeared frequently in enological research for more than 100 years, mostly focused upon the species due to its notable capacity to cause spoilage. Recently, there has been increased research into the potential benefits of other species, such as in producing more complex wines. Furthermore, large-scale DNA sequencing-based (metabarcoding) vineyard ecology studies have suggested that species may not be evenly distributed.

View Article and Find Full Text PDF

In recent years, multi-cellular models, where cells are represented as individual interacting entities, are becoming ever popular. This has led to a proliferation of novel methods and simulation tools. The first aim of this paper is to review the numerical methods utilised by multi-cellular modelling tools and to demonstrate which numerical methods are appropriate for simulations of tissue and organ development, maintenance, and disease.

View Article and Find Full Text PDF

The role of direct cell-to-cell spread in viral infections-where virions spread between host and susceptible cells without needing to be secreted into the extracellular environment-has come to be understood as essential to the dynamics of medically significant viruses like hepatitis C and influenza. Recent work in both the experimental and mathematical modelling literature has attempted to quantify the prevalence of cell-to-cell infection compared to the conventional free virus route using a variety of methods and experimental data. However, estimates are subject to significant uncertainty and moreover rely on data collected by inhibiting one mode of infection by either chemical or physical factors, which may influence the other mode of infection to an extent which is difficult to quantify.

View Article and Find Full Text PDF

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation.

View Article and Find Full Text PDF

Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped-magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of 'OPM-MEG' systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost.

View Article and Find Full Text PDF

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation.

View Article and Find Full Text PDF

Coordination of cell behaviour is key to a myriad of biological processes including tissue morphogenesis, wound healing, and tumour growth. As such, individual-based computational models, which explicitly describe inter-cellular interactions, are commonly used to model collective cell dynamics. However, when using individual-based models, it is unclear how descriptions of cell boundaries affect overall population dynamics.

View Article and Find Full Text PDF

There has been an increasing recognition of the utility of models of the spatial dynamics of viral spread within tissues. Multicellular models, where cells are represented as discrete regions of space coupled to a virus density surface, are a popular approach to capture these dynamics. Conventionally, such models are simulated by discretising the viral surface and depending on the rate of viral diffusion and other considerations, a finer or coarser discretisation may be used.

View Article and Find Full Text PDF

Over the past 40 years, there has been a strong focus on the development of mathematical models of angiogenesis, while developmental remodelling has received little such attention from the mathematical community. Sprouting angiogenesis can be seen as a very crude way of laying out a primitive vessel network (the raw material), while remodelling (understood as pruning of redundant vessels, diameter control, and the establishment of vessel identity and hierarchy) is the key to turning that primitive network into a functional network. This multiscale problem is of prime importance in the development of a functional vasculature.

View Article and Find Full Text PDF

1,3-Diamine-derived catalysts were designed, synthesized, and used in asymmetric Mannich reactions of ketones. The reactions catalyzed by one of the 1,3-diamine derivatives in the presence of acids afforded the Mannich products with high enantioselectivities under mild conditions. In most cases, bond formation occurred at the less-substituted α-position of the ketone carbonyl group.

View Article and Find Full Text PDF

The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction.

View Article and Find Full Text PDF

The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions.

View Article and Find Full Text PDF

Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge.

View Article and Find Full Text PDF

Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies.

View Article and Find Full Text PDF

The maintenance of tissue and organ structures during dynamic homeostasis is often not well understood. In order for a system to be stable, cell renewal, cell migration and cell death must be finely balanced. Moreover, a tissue's shape must remain relatively unchanged.

View Article and Find Full Text PDF

Maintenance of epidermal thickness is critical to the barrier function of the skin. Decreased tissue thickness, specifically in the stratum corneum (the outermost layer of the tissue), causes discomfort and inflammation, and is related to several severe diseases of the tissue. In order to maintain both stratum corneum thickness and overall tissue thickness it is necessary for the system to balance cell proliferation and cell loss.

View Article and Find Full Text PDF
Article Synopsis
  • Magnetically Shielded Rooms (MSRs) are used to block external magnetic fields, crucial for precise measurements in techniques like magnetoencephalography (MEG).
  • Optically Pumped Magnetometers (OPMs) enable wearable MEG technology, but they require strict magnetic shielding to function properly.
  • The new lightweight MSR design greatly reduces weight and size, while also introducing a 'window coil' system to optimize shielding, making it more cost-effective and easier to install for broad adoption of OPM-MEG.
View Article and Find Full Text PDF

Grapevine red blotch disease (GRBD) has negative effects on grape development and impacts berry ripening. Abscisic acid (ABA) is a plant growth regulator involved in the initiation of berry ripening. Exogenous abscisic acid application was compared to an unsprayed control on GRBD-positive Pinot noir vines during two vintages, and the total monomeric anthocyanin, total phenolics, phenolic composition, and volatile profile were measured in wines.

View Article and Find Full Text PDF

Chronic wounds, such as venous leg ulcers, are difficult to treat and can reduce the quality of life for patients. Clinical trials have been conducted to identify the most effective venous leg ulcer treatments and the clinical factors that may indicate whether a wound will successfully heal. More recently, mathematical modelling has been used to gain insight into biological factors that may affect treatment success but are difficult to measure clinically, such as the rate of oxygen flow into wounded tissue.

View Article and Find Full Text PDF

Angiogenesis occurs in distinct phases: initial spouting is followed by remodelling in which endothelial cells (ECs) composing blood vessels rearrange by migrating against the direction of flow. Abnormal remodelling can result in vascular malformation. Such is the case in mutation of the Alk1 receptor within the mouse retina which disrupts flow-migration coupling, creating mixed populations of ECs polarised with/against flow which aggregate into arteriovenous malformations (AVMs).

View Article and Find Full Text PDF

d-Serine is a coagonist of the -methyl d-aspartate (NMDA) receptor, a key excitatory neurotransmitter receptor. In the brain, d-serine is synthesized from its l-isomer by serine racemase and is metabolized by the D-amino acid oxidase (DAO, DAAO). Many studies have linked decreased d-serine concentration and/or increased DAO expression and enzyme activity to NMDA dysfunction and schizophrenia.

View Article and Find Full Text PDF