Publications by authors named "James Ogbonna"

Pollution caused by spent engine oil has become a major global ecological concern as it constitutes a big threat to plants, animals, microorganisms and the soil ecosystem. This study was undertaken to examine the remediation of spent engine oil-contaminated soil through biostimulation and bioaugmentation with sodium dodecyl sulphate and indigenous hydrocarbonoclastic bacterial isolates. Twelve mesocosms were organized into four groups designated G1, G2, G3 and G4 and each filled with 2.

View Article and Find Full Text PDF

The application of Caenorhabditis elegans as a pathogenic model has spanned decades. Its use for pathogenic mould modeling has been attracting some attention lately, though not without some reservations. Several studies have shown C.

View Article and Find Full Text PDF

The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose.

View Article and Find Full Text PDF

Energy crisis and environmental sustainability have attracted global attention to microalgal biofuels. The present study investigated the impact of organic carbon sources on growth and bio-oil accumulation by an oleaginous microalga Desmodesmus subspicatus LC172266 under mixotrophic culture condition. Glucose and glycerol supported higher growth rates and lipid productivities than sucrose, fructose, mannitol and acetate.

View Article and Find Full Text PDF

Crude oil degradation efficiency can be improved because of co-metabolism that exists when bacterial consortium is applied. However, because of possible vulnerability to environmental conditions and/or antagonistic interactions among members of the consortium, the degradation efficiency can be hampered. In this laboratory-based study, the biodegradation potentials of pure bacterial isolates namely Pseudomonas aeruginosa strain W15 (MW320658), Providencia vermicola strain W8 (MW320661) and Serratia marcescens strain W13 (MW320662) earlier isolated from crude oil-contaminated site and their consortium were evaluated using 3% crude oil-supplemented Bushnell Haas media.

View Article and Find Full Text PDF

Application of bacterial consortium of hydrocarbon degraders to crude oil-contaminated site can enhance bioremediation. This study evaluated the population dynamics and crude oil degradation abilities of various consortia developed from bacterial strains isolated from crude oil-contaminated sites using crude oil-supplemented Bushnell Haas media. Each consortium consisted of three bacterial strains and was designated as Consortium A (Serratia marcescens strain N4, Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11), B (Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), C (Serratia marcescens strain N4, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), and D (Pseudomonas aeruginosa strain W15, Providencia vermicola strain W8, Serratia marcescens strain W13).

View Article and Find Full Text PDF

The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in modeling organisms are vital research projects for controlling mycoses. has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects.

View Article and Find Full Text PDF

Effects of carbon source, nitrogen source, and alternatingly submerging the cells and exposing to gaseous oxygen on pigment production by Talaromyces purpurogenus LC128689, as well as pH, temperature, and UV stability of the pigments were investigated. Although fructose supported higher cell growth, a mixture of glucose and glycerol resulted in higher pigment production. Out of the organic and inorganic nitrogen sources investigated, peptone gave the highest cell concentration (7.

View Article and Find Full Text PDF

With the mortality rate of invasive aspergillosis caused by reaching almost 100% among some groups of patients, and with the rapidly increasing resistance of to available antifungal drugs, new antifungal agents have never been more desirable than now. Numerous bioactive compounds were isolated and characterized from marine resources. However, only a few exhibited a potent activity against when compared to the multitude that did against some other pathogens.

View Article and Find Full Text PDF

is the most reported causative pathogen associated with the increasing global incidences of aspergilloses, with the health of immunocompromised individuals mostly at risk. Monitoring the pathogenicity of strains to identify virulence factors and evaluating the efficacy of potent active agents against this fungus in animal models are indispensable in current research effort. has been successfully utilized as an infection model for bacterial and dimorphic fungal pathogens because of the advantages of being time-efficient, and less costly.

View Article and Find Full Text PDF

Background: Although bioethanol production has been gaining worldwide attention as an alternative to fossil fuel, ethanol productivities and yields are still limited due to the susceptibility of fermentation microorganisms to various stress and inhibitory substances. There is therefore an unmet need to search for multi-stress-tolerant organisms to improve ethanol productivity and reduce production cost, particularly when lignocellulosic hydrolysates are used as the feedstock.

Results: Here, we have characterized a previously isolated LC375240 strain which is thermotolerant to high temperatures of 37 °C and 42 °C.

View Article and Find Full Text PDF

Background: Although advantages of immobilization of cells through entrapment in calcium alginate gel beads have already been demonstrated, nevertheless, instability of the beads and the mass transfer limitations remain as the major challenges.

Objective: The objective of the present study was to increase the stability, porosity (reduce mass transfer limitation), and cell immobilization capacity of calcium alginate gel beads.

Materials And Methods: Sodium alginate was mixed with various concentrations of the starch or sugar and gelled in 2% calcium chloride solution.

View Article and Find Full Text PDF

Environmental consequences of high productivity piggeries are significant and can result in negative environmental impacts, hence bioremediation techniques (in particular using macroalgae) are therefore of great interest. Here, the growth potential of several freshwater macroalgae in anaerobic digestion piggery effluent (ADPE), their nutrient removal rates and biochemical composition of the biomass were investigated under outdoor climatic conditions. A consortium of two macroalgae, Rhizoclonium sp.

View Article and Find Full Text PDF

Objective: To investigate a syntrophic interaction between Geobacter sulfurreducens and hydrogenotrophic methanogens in sludge-inoculated microbial fuel cell (MFC) systems running on glucose with an improved electron recovery at the anode.

Results: The presence of archaea in MFC reduces Coulombic efficiency (CE) due to their electron scavenging capability but, here, we demonstrate that a syntrophic interaction can occur between G. sulfurreducens and hydrogenotrophic methanogens via interspecies H transfer with improvement in CE and power density.

View Article and Find Full Text PDF

A method for the aerobic treatment of palm oil mill effluent (POME) was investigated in shake-flask experiments using a consortium developed from POME compost. POME was initially centrifuged at 4,000 g for 15 min and the supernatant was enriched with (NH4)2SO4 (0.5%) and yeast extract (0.

View Article and Find Full Text PDF

Tocopherols are antioxidants that prevent various diseases caused by oxidative stress. Tocochromanols comprise four isoforms of tocopherols and four isoforms of tocotrienols but alpha-tocopherol is the most abundant and active isoform in human and animal tissues. Tocopherols are used as dietary supplements for human, as food preservatives, in manufacture of cosmetics, and for fortification of animal feed.

View Article and Find Full Text PDF

Effects of organic carbon sources on cell growth and alpha-tocopherol productivity in wild and chloroplast-deficient W14ZUL strains of Euglena gracilis under photoheterotrophic culture were investigated. In both strains, the increase in cell growth was particularly high when glucose was added as the sole organic carbon source. On the other hand, alpha-tocopherol production per dry cell weight was enhanced by adding ethanol.

View Article and Find Full Text PDF

The feasibility of using loofa sponge for immobilization of cellulase-producing microorganisms was investigated by acetylating loofa sponge. Acetylation was achieved by autoclaving process of loofa sponge immersed in acetic anhydride at various temperatures for various times. The degree of acetylation, as inferred by the weight percentage gain (WPG), was enhanced by increasing both temperature and the duration of acetylation.

View Article and Find Full Text PDF

L-Lactic acid was produced from raw cassava starch, by simultaneous enzyme production, starch saccharification and fermentation in a circulating loop bioreactor with Aspergillus awamori and Lactococcus lactis spp. lactis immobilized in loofa sponge. A.

View Article and Find Full Text PDF