Electrospray ionization ion mobility mass spectrometry (ESI-IMMS) was used to study the striatal metabolomes in a Parkinson's like disease (PD-like) rat model. Striatal tissue samples from Berlin Druckrey IV (BD-IV) with PD-like disease 20 dpn-affected and 15 dpn-affected rats (dpn: days postnatal) were investigated and compared with age-matched controls. An ion mobility mass spectrometer (IMMS) produced multidimensional spectra with mass to charge ratio (m/z), ion mobility drift time, and intensity information for each individual metabolite.
View Article and Find Full Text PDFBackground: Cocaine-related deaths are continuously rising and its overdose is often associated with lethal cardiotoxic effects.
Methods And Results: Our approach, employing isothermal titration calorimetry (ITC) and light scattering in parallel, has confirmed the significant affinity of human cardiac calsequestrin (CASQ2) for cocaine. Calsequestrin (CASQ) is a major Ca(2+)-storage protein within the sarcoplasmic reticulum (SR) of both cardiac and skeletal muscles.
We report results of studies of global and targeted neuronal metabolomes by ambient pressure ion mobility mass spectrometry. The rat frontal cortex, striatum, and thalamus were sampled from control nontreated rats and those treated with acute cocaine or pargyline. Quantitative evaluations were made by standard additions or isotopic dilution.
View Article and Find Full Text PDFCurr Drug Abuse Rev
September 2012
Addiction to methamphetamine (METH) is thought to be mediated by dopaminergic effects in the reward pathway in the brain via the A10 dopaminergic pathway. Herein we describe an overview of the results of the basic preclinical science undertaken to provide mechanistic insights into the action of amphetamines in general and METH in particular. A brief history of amphetamine and METH use and abuse is given, and an overview of the relevant chemical aspects of amphetamine as they relate to neurotransmitters in general is made.
View Article and Find Full Text PDFNeuronal protein α-synuclein (α-syn) is an essential player in the development of neurodegenerative diseases called synucleinopathies. A spontaneous autosomal recessive rat model for neurodegeneration was developed in our laboratory. These rats demonstrate progressive increases in α-syn in the brain mesencephalon followed by loss of dopaminergic terminals in the basal ganglia (BG) and motor impairments.
View Article and Find Full Text PDFAn unstirred layer (USL) exists at the interface of solids with solutions. Thus, the particles in brain tissue preparations possess a USL as well as at the surface of a rotating disk electrode (RDE) used to measure chemical fluxes. Time constraints for observing biological kinetics based on estimated thicknesses of USLs at the membrane surface in real samples of nerve endings were estimated.
View Article and Find Full Text PDFThe metabolic stability of a drug is an important property that should be optimized during drug design and development. Nitrogen incorporation is hypothesized to increase the stability by coordination of nitrogen to the heme iron of cytochrome P450, a binding mode that is referred to as type II binding. However, we noticed that the type II binding compound 1 has less metabolic stability at sub-saturating conditions than a closely related type I binding compound 3.
View Article and Find Full Text PDFField detection and quantification of f-elements is an important problem in radioanalytical chemistry requiring small, portable devices. Here, characterization of a 10 μm Hg film carbon fiber disk microelectrode to accumulate f-elements is described. Accumulation was performed by cathodic deposition and evaluated by anodic stripping and subsequent ICPMS analyses.
View Article and Find Full Text PDFAlthough many studies assert that the serotonin (5-HT) transporter (SERT) is the predominant mechanism controlling extracellular 5-HT concentrations, accumulating evidence suggests that low affinity, high capacity transport mechanisms may contribute more to 5-HT clearance than previously thought. The goal of this study was to quantify the contributions of SERT relative to other mechanisms in clearing extracellular 5-HT concentrations ranging from 50 nM to 1 μM in synaptosomes prepared from wild-type and SERT knockout mice using rotating disk electrode voltammetry. SERT inhibitors combined with decynium-22 (D-22), a blocker of several low-affinity transporters, blocked all uptake of 5-HT into synaptosomes.
View Article and Find Full Text PDFAn evaluation using paraffin oil based, Acheson 38 carbon paste electrodes modified with α-hydroxyisobutyric acid (HIBA) to preconcentrate f-elements cathodically is described. The modified paste was made by directly mixing solid HIBA into the carbon paste. A chemically reversible cyclic voltammogram for HIBA was observed on this modified carbon paste, which was found to be a non-Nerstian, single electron transfer process.
View Article and Find Full Text PDFAltered serotonin (5-HT) signaling is implicated in several neuropsychiatric disorders, including depression, anxiety, obsessive-compulsive disorder, and autism. The 5-HT transporter (SERT) modulates 5-HT neurotransmission strength and duration. This is the first study using rotating disk electrode voltammetry (RDEV) to measure 5-HT clearance.
View Article and Find Full Text PDFAn approach to concentrate trivalent lanthanide elements into or onto mercury film electrodes supported on rotating disk glassy carbon electrodes in small volumes (
Circadian rhythms influence cocaine-seeking behavior in rats, and this behavior may be mediated by variability in the rate of extracellular dopamine clearance across the day:night cycle. We used rotating disk electrode voltammetry to examine dopamine clearance and inhibition of clearance by cocaine in the rat medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Rats were housed under light:dark conditions (LD, 12 h:12 h) or in constant darkness (DD), the latter given just prior to the day of sacrifice.
View Article and Find Full Text PDFAnimals sensitized to methamphetamine (METH) have altered dopaminergic systems, including dopamine transporter (DAT) activity. We investigated the effects induced by a sensitizing dose (5 mg/kg, i.p.
View Article and Find Full Text PDFZn2+ may play a major role in the modulation of neurotransmission because it modulates membrane receptors and channels. Recent literature has shown Zn2+ inhibits dopamine transport by the dopamine transporter (DAT), the main target of cocaine and some other drugs of abuse. Cocaine inhibits DAT and modulation of the DAT by Zn2+ may alter effects of cocaine on dopamine neurotransmission.
View Article and Find Full Text PDFThe persistence of drug addiction suggests that drugs of abuse enhance learning and/or impair extinction of the drug memory. We studied the effects of repeated cocaine on learning, memory and reinstatement in the pond snail, Lymnaea stagnalis. Respiratory behavior can be operantly conditioned and extinguished in Lymnaea, and this behavior is dependent on a critical dopamine neuron.
View Article and Find Full Text PDFThe neuronal dopamine transporter (DAT) is a transmembrane transporter that clears DA from the synaptic cleft. Knowledge of DAT functional group topography is a prerequisite for understanding the molecular basis of transporter function, the actions of psychostimulant drugs, and mechanisms of dopaminergic neurodegeneration. Information concerning the molecular interactions of drugs of abuse (such as cocaine, amphetamine, and methamphetamine) with the DAT at the functional group level may also aid in the development of compounds useful as therapeutic agents for the treatment of drug abuse.
View Article and Find Full Text PDFThe methylphenidate analogs N-methyl-4-methyl-methylphenidate and N-benzylmethylphenidate are believed to interact differently with the dopamine transporter (DAT) in vitro and in vivo. Herein, we report that methylphenidate and N-methyl-4-methyl-methylphenidate, but not N-benzylmethylphenidate, protect the rat striatal DAT from the arginine-selective chemical modifying agent, phenylglyoxal. This suggests that methylphenidate and N-methyl-4-methyl-methylphenidate, but not N-benzylmethylphenidate, interact with the guanidine groups of arginine residues in the DAT of rat striatum.
View Article and Find Full Text PDFBackground: Ethanol increases dopamine transporter (DAT) velocity when measured in cell expression systems, but its effects in vivo are mixed. The present experiments examined the effect of acute ethanol on dopamine transmission, particularly DAT velocity, in anesthetized animals as well as rat striatal suspensions.
Methods: To determine the effect of acute ethanol on DAT function in vivo, we measured dopamine uptake in real time using fast-scan cyclic voltammetry and constant potential amperometry in the olfactory tubercle of anesthetized rats.
Herein we describe how the rotating disk electrode voltammetric technique can be used to examine the mechanism(s) of the inward transport of dopamine by the neuronal transporter for dopamine (DAT). The usefulness of making measurements kinetically resolving dopamine transport, interpretations of changes in Km and Vmax, approaches to defining pre-steady-state binding of dopamine to DAT, interactions between competing inhibitors, chemical modification of functional groups within DAT, and a presentation of a hypothetical multi-state model of dopamine transport are presented and discussed.
View Article and Find Full Text PDFLiterature reports suggest that nitric oxide (NO) participates in the regulation of dopaminergic neurotransmission, possibly through interaction with cysteine residues of the dopamine transporter (DAT). Rotating disk electrode voltammetry was used to measure dopamine (DA) transport in rat striatum to determine if 1) the nitric oxide synthase (NOS) substrate, L-arginine (L-Arg), could affect DAT activity; 2) L-Arg-dependent effects on DAT activity could be blocked by NOS and guanylate cyclase inhibitors, a NO scavenger, DA, and cocaine; 3) a NO donor could affect DAT activity; and 4) L-Arg could protect the DAT from a sulfhydryl agent. L-Arg increased DAT activity by increasing V(max).
View Article and Find Full Text PDFRotating disk electrode voltammetry was used to measure dopamine (DA) transport in rat striatum and in human embryonic kidney cells expressing the rat dopamine transporter (DAT). The goals of this study were to determine 1) if arginine (Arg) selective agents could alter DA transport, and 2) if DA analogs and DAT inhibitors could attenuate the effects of these agents on the DAT. Phenylglyoxal (PG), Hill coefficient 2.
View Article and Find Full Text PDFThe dopamine transporter (DAT) is a Na+- and Cl--dependent transporter and, with respect to its three apparent substrates, both partially random sequential as well as ordered mechanisms have been reported. Here we describe some of the features of DAT, such as the coupling of energy to concentrate dopamine and the properties of slippage and leakage. Further, in considering the regulation of transport velocities by DAT few have considered issues related to substrate regulation of DAT activity.
View Article and Find Full Text PDFThe dopamine transporter (DAT) is a transmembrane spanning protein that catalyzes the transport of dopamine across the neuronal membrane to concentrate the neurotransmitter inside the cell. Although the uptake of dopamine has been studied since the 1960s, more recent advances in knowledge of the protein itself and in making kinetically resolved measurements of its action have led to more insights into its mechanism and pharmacology. The literature of the kinetics of transporters and kinetic measurements of DAT activity is reviewed to provide an overview of the multisubstrate mechanism of DAT activity, its pharmacology with regard to amphetamine, cocaine and methylphenidate, and correlations of DAT activity with some behavioral outputs.
View Article and Find Full Text PDF