Publications by authors named "James O McNamara"

The lack of preventive and disease modifying therapies for temporal lobe epilepsy (TLE) is a major unmet medical need. Search for such therapies utilize mouse models and require detection of seizures in electroencephalography (EEG) recordings. The labor-intensive nature of reviewing EEGs spanning many weeks underscores the need for a method of automated detection.

View Article and Find Full Text PDF

Purpose: Staphylococcus aureus is the most common and impactful multi-drug resistant pathogen implicated in (periprosthetic) joint infections (PJI) and fracture-related infections (FRI). Therefore, the present proof-of-principle study was aimed at the rapid detection of S. aureus in synovial fluids and biofilms on extracted osteosynthesis materials through bacteria-targeted fluorescence imaging with the 'smart-activatable' DNA-based AttoPolyT probe.

View Article and Find Full Text PDF

Insight into the cellular and circuit mechanisms underlying development of temporal lobe epilepsy (TLE) will provide a foundation for improved therapies. We studied a model in which an episode of prolonged seizures is followed by recovery lasting two weeks before emergence of spontaneous recurrent seizures. We focused on the interval between the prolonged seizures and the late onset recurrent seizures.

View Article and Find Full Text PDF

We set out to establish a novel model of temporal lobe epilepsy (TLE) in a mouse. We sought to induce TLE through the injection of kainic acid (KA) into the tail vein with subsequent development of status epilepticus (SE). Using C57BL/6 mice, we implanted hippocampal EEG recording electrodes before or after injection of KA or phosphate buffered saline (PBS).

View Article and Find Full Text PDF

Epilepsy Aphasia Syndromes (EAS) are a spectrum of childhood epileptic, cognitive, and language disorders of unknown etiology. is a strong X-linked candidate gene implicated in EAS; however, there have been no studies of genetic models to dissect how its absence may lead to EAS. Here we develop a novel KO mouse line and show that male mice exhibit increased neural activity and have spontaneous electrographic seizures.

View Article and Find Full Text PDF

Staphylococcus aureus bacteraemia (SAB) is associated with high mortality and morbidity rates. Yet, there is currently no adequate diagnostic test for early and rapid diagnosis of SAB. Therefore, this study was aimed at exploring the potential for clinical implementation of a nuclease-activatable fluorescent probe for early diagnosis of SAB.

View Article and Find Full Text PDF

Objective: Temporal lobe epilepsy (TLE) is a devastating disease in which seizures persist in 35% of patients despite optimal use of antiseizure drugs. Clinical and preclinical evidence implicates seizures themselves as one factor promoting epilepsy progression. What is the molecular consequence of a seizure that promotes progression? Evidence from preclinical studies led us to hypothesize that activation of tropomyosin kinase B (TrkB)-phospholipase-C-gamma-1 (PLCγ1) signaling induced by a seizure promotes epileptogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) and status epilepticus (SE) are both associated with the onset of epilepsy in humans, and research suggests common molecular mechanisms may contribute to this development.
  • The study emphasizes the role of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the progression of epilepsy following TBI and SE, using animal models to understand these mechanisms better.
  • The article discusses potential strategies to manipulate BDNF/TrkB signaling to either prevent the onset of epilepsy after brain injuries or reduce its severity after it has developed.
View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is a common and commonly devastating form of human epilepsy for which only symptomatic therapy is available. One cause of TLE is an episode of prolonged seizures [status epilepticus (SE)]. Understanding the molecular signaling mechanisms by which SE transforms a brain from normal to epileptic may reveal novel targets for preventive and disease-modifying therapies.

View Article and Find Full Text PDF

While many neuroscience questions aim to understand the human brain, much current knowledge has been gained using animal models, which replicate genetic, structural, and connectivity aspects of the human brain. While voxel-based analysis (VBA) of preclinical magnetic resonance images is widely-used, a thorough examination of the statistical robustness, stability, and error rates is hindered by high computational demands of processing large arrays, and the many parameters involved therein. Thus, workflows are often based on intuition or experience, while preclinical validation studies remain scarce.

View Article and Find Full Text PDF

Hippocampal mossy fiber axons simultaneously activate CA3 pyramidal cells and stratum lucidum interneurons (SLINs), the latter providing feedforward inhibition to control CA3 pyramidal cell excitability. Filopodial extensions of giant boutons of mossy fibers provide excitatory synaptic input to the SLIN. These filopodia undergo extraordinary structural plasticity causally linked to execution of memory tasks, leading us to seek the mechanisms by which activity regulates these synapses.

View Article and Find Full Text PDF

The key to effective treatment of bacterial infections is a swift and reliable diagnosis. Current clinical standards of bacterial diagnosis are slow and laborious. There are several anatomical imaging modalities that can detect inflammation, but none can distinguish between bacterial and sterile inflammation.

View Article and Find Full Text PDF

A challenge for circulating tumor cell (CTC)-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1) their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2) their enzymatic activity, which can be exploited for signal amplification in detection methods.

View Article and Find Full Text PDF

Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed.

View Article and Find Full Text PDF

Current water quality monitoring methods rely on growth-based measurements to detect fecal indicator bacteria, such as Escherichia coli and enterococci, and Staphylococcus aureus (S. aureus). These growth-based measurements, however, can take days to complete.

View Article and Find Full Text PDF

Vagal Nerve Stimulation (VNS) Therapy is a United States Food and Drug Administration approved neurotherapeutic for medically refractory partial epilepsy and treatment-resistant depression. The molecular mechanisms underlying its beneficial effects are unclear. We hypothesized that one mechanism involves neuronal activity-dependent modifications of central nervous system excitatory synapses.

View Article and Find Full Text PDF

Mutation of fibroblast growth factor 13 (FGF13) has recently been implicated in genetic epilepsy with febrile seizures plus (GEFS+) in a single family segregating a balanced translocation with a breakpoint in this X chromosome gene, predicting a partial knockout involving 3 of 5 known FGF13 isoforms. Investigation of a mouse model of complete Fgf13 knock-out revealed increased susceptibility to hyperthermia-induced seizures and epilepsy. Here we investigated whether mutation of FGF13 would explain other cases of GEFS+ compatible with X-linked inheritance.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are crucial for many forms of neuronal plasticity, including structural long-term potentiation (sLTP), which is a correlate of an animal's learning. However, it is unknown whether BDNF release and TrkB activation occur during sLTP, and if so, when and where. Here, using a fluorescence resonance energy transfer-based sensor for TrkB and two-photon fluorescence lifetime imaging microscopy, we monitor TrkB activity in single dendritic spines of CA1 pyramidal neurons in cultured murine hippocampal slices.

View Article and Find Full Text PDF

The Rho GTPase proteins Rac1, RhoA and Cdc42 have a central role in regulating the actin cytoskeleton in dendritic spines, thereby exerting control over the structural and functional plasticity of spines and, ultimately, learning and memory. Although previous work has shown that precise spatiotemporal coordination of these GTPases is crucial for some forms of cell morphogenesis, the nature of such coordination during structural spine plasticity is unclear. Here we describe a three-molecule model of structural long-term potentiation (sLTP) of murine dendritic spines, implicating the localized, coincident activation of Rac1, RhoA and Cdc42 as a causal signal of sLTP.

View Article and Find Full Text PDF

S. aureus bacteremia (SAB) is a common condition with high rates of morbidity and mortality. Current methods used to diagnose SAB take at least a day, and often longer.

View Article and Find Full Text PDF

The BDNF receptor tyrosine kinase, TrkB, underlies nervous system function in both health and disease. Excessive activation of TrkB caused by status epilepticus promotes development of temporal lobe epilepsy (TLE), revealing TrkB as a therapeutic target for prevention of TLE. To circumvent undesirable consequences of global inhibition of TrkB signaling, we implemented a novel strategy aimed at selective inhibition of the TrkB-activated signaling pathway responsible for TLE.

View Article and Find Full Text PDF

We identified a family in which a translocation between chromosomes X and 14 was associated with cognitive impairment and a complex genetic disorder termed "Genetic Epilepsy and Febrile Seizures Plus" (GEFS(+)). We demonstrate that the breakpoint on the X chromosome disrupted a gene that encodes an auxiliary protein of voltage-gated Na(+) channels, fibroblast growth factor 13 (Fgf13). Female mice in which one Fgf13 allele was deleted exhibited hyperthermia-induced seizures and epilepsy.

View Article and Find Full Text PDF