Publications by authors named "James Nettles"

Ethnopharmacological Relevance: Geological materials, such as minerals, have a long history of usage as ingredients in multicompound formulations of Himalayan Sowa Rigpa medicine - as well as in its localized form of Bhutanese traditional medicine (BTM) - for treating various disorders for over thousand years. Yet, hardly any scientific research has been done on their ethnopharmacological efficacy and chemistry.

Aim Of The Study: This study documents and correlates the rarely explored ethnopharmacological and chemical identification of various minerals and their ethnomedicinal uses in BTM formulations for the first time.

View Article and Find Full Text PDF

This article reviews the current state of knowledge of the role of massage therapy in the treatment of common psychiatric disorders and symptoms. It briefly discusses the prevalence of psychiatric disorders and the popularity of complementary and integrative treatments in the general population. The authors touch on the growing literature describing the biology and neurobiology of massage therapy.

View Article and Find Full Text PDF

Background: Cancer-related fatigue (CRF) is a prevalent and debilitating symptom experienced by cancer survivors, yet treatment options for CRF are limited. In this study, we evaluated the efficacy of weekly Swedish massage therapy (SMT) versus an active control condition (light touch [LT]) and waitlist control (WLC) on persistent CRF in breast cancer survivors.

Methods: This early phase, randomized, single-masked, 6-week investigation of SMT, LT, and WLC enrolled 66 female stage 0-III breast cancer survivors (age range, 32-72 years) who had received surgery plus radiation and/or chemotherapy/chemoprevention with CRF (Brief Fatigue Inventory > 25).

View Article and Find Full Text PDF

SAMHD1 hydrolyzes 2'-deoxynucleoside-5'-triphosphates (dNTPs) into 2'-deoxynucleosides and inorganic triphosphate products. In this paper, we evaluated the impact of 2' sugar moiety substitution for different nucleotides on being substrates for SAMHD1 and mechanisms of actions for the results. We found that dNTPs ((2'R)-2'-H) are only permissive in the catalytic site of SAMHD1 due to L150 exclusion of (2'R)-2'-F and (2'R)-2'-OH nucleotides.

View Article and Find Full Text PDF

A library of 585 compounds built off a 7-azaindole core was evaluated for anti-HIV-1 activity, and ten hits emerged with submicromolar potency and therapeutic index >100. Of these, three were identified as non-nucleoside reverse transcriptase (RT) inhibitors and were assayed against relevant resistant mutants. Lead compound 8 inhibited RT with submicromolar potency (IC50=0.

View Article and Find Full Text PDF

Non-nucleoside reverse transcriptase inhibitors (NNRTI) are allosteric inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), a viral polymerase essential to infection. Despite the availability of >150 NNRTI-bound RT crystal structures, rational design of new NNRTI remains challenging because of the variability of their induced fit, hydrophobic binding patterns. Docking NNRTI yields inconsistent results that vary markedly depending on the receptor structure used, as only 27% of the >20k cross-docking calculations we performed using known NNRTI were accurate.

View Article and Find Full Text PDF

The design and synthesis of new non-symmetrical NS5A inhibitors with sulfur containing amino acids is reported along with their ability to block HCV replication in an HCV 1b replicon system. These compounds display EC50 values in the picomolar range with a large therapeutic index (>10(6)). Moreover, cellular pharmacology studies show that our preferred compounds intracellularly deliver three potent NS5A inhibitors.

View Article and Find Full Text PDF

Symmetric, dimeric daclatasvir (BMS-790052) is the clinical lead for a class of picomolar inhibitors of HCV replication. While specific, resistance-bearing mutations at positions 31 and 93 of domain I strongly suggest the viral NS5A as target, structural mechanism(s) for the drugs' activities and resistance remains unclear. Several previous models suggested symmetric binding modes relative to the homodimeric target; however, none can fully explain SAR details for this class.

View Article and Find Full Text PDF

Recent progress in the understanding of hepatitis C virus (HCV) biology and the availability of in vitro models to study its replication have facilitated the development of direct-acting antiviral agents (DAAs) that target specific steps in the viral replication cycle. Currently, there are three major classes of DAA in clinical development: NS3/4A protease inhibitors, NS5B polymerase inhibitors, and NS5A directed inhibitors. Several compounds thought to bind directly with NS5A are now in various clinical trial phases, including the most advanced, daclatasvir (BMS-790052), ledipasvir (GS-5885), and ABT-267.

View Article and Find Full Text PDF

RT-SHIV is a chimera of simian immunodeficiency virus (SIV) containing the reverse transcriptase (RT)-encoding region of human immunodeficiency virus type 1 (HIV-1) within the backbone of SIVmac239. It has been used in a non-human primate model for studies of non-nucleoside RT inhibitors (NNRTI) and highly active antiretroviral therapy (HAART). We and others have identified several mutations that arise in the "foreign" HIV-1 RT of RT-SHIV during in vivo replication.

View Article and Find Full Text PDF

Based on the symmetrical bidentate structure of the NS5A inhibitor BMS-790052, a series of new monodentate molecules were designed. The synthesis of 36 new non-dimeric NS5A inhibitors is reported along with their ability to block HCV replication in an HCV 1b replicon system. Among them compound 5a showed picomolar range activity along with an excellent selectivity index (SI > 90,000).

View Article and Find Full Text PDF

β-D-3'-Azido-2',3'-dideoxyguanosine (3'-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3'-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3'-azido-ddG in primary cells. To gain insight into their structure-activity-resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used microwave-assisted methods to create eleven modified l-3'-azido-2',3'-dideoxypurine nucleosides for testing against HIV and hepatitis B virus.
  • Although the modified nucleosides were metabolized in human lymphocytes, they showed little to no antiviral activity against HIV-1 and HBV.
  • A specific prodrug variant demonstrated some effectiveness against HIV-1 without major toxicity, despite the low efficiency of the nucleoside triphosphates in being incorporated by the virus's reverse transcriptase.
View Article and Find Full Text PDF

Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research.

View Article and Find Full Text PDF

Resistance to human immunodeficiency virus type 1 (HIV-1) represents a significant problem in the design of novel therapeutics and the management of treatment regimens in infected persons. Resistance profiles can be elucidated by defining modifications to the viral genome conferred upon exposure to novel nucleoside reverse transcriptase (RT) inhibitors (NRTI). In vitro testing of HIV-1LAI-infected primary human lymphocytes treated with β-D-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine (DFC; Dexelvucitabine; Reverset) produced a novel deletion of AGT at codon 68 (S68Δ) alone and in combination with K65R that differentially affects drug response.

View Article and Find Full Text PDF

While HIV-1 reverse transcriptase (RT) mutations of M to V at position 184 are commonly observed in the clinic, the double mutation of 65R+74V is rarely seen. It has been demonstrated that rapid R-->K reversion occurs at RT codon 65 during replication of HIV-1 in human peripheral blood mononuclear cells containing 65R+74V mutations and that processivity of the RT is reduced relative to wild type. However, clinical studies show that M184V can be detected after several months of therapy interruption, suggesting more effective processivity.

View Article and Find Full Text PDF

Since tubulin was discovered in 1967, drug probes have been used to manipulate mechanisms of microtubule polymerization and disassembly. In parallel, advances in optical imagery, electron microscopy, along with both electron and X-ray diffraction have provided ability to "see" the molecular underpinning of these machines. Nanoscale mapping of different tubulin polymers formed in the presence of different drugs and cofactors provide a context for examining the dynamic features relevant to their biological activity.

View Article and Find Full Text PDF

Traditional methods for general drug discovery typically include evaluating random compound libraries for activity in relevant cell-free or cell-based assays. Success in antiviral development has emerged from the discovery of more focused libraries that provide clues about structure activity relationships. Combining these with more recent approaches including structural biology and computational modeling can work efficiently to hasten discovery of active molecules, but that is not enough.

View Article and Find Full Text PDF

High throughput screening (HTS) data is often noisy, containing both false positives and negatives. Thus, careful triaging and prioritization of the primary hit list can save time and money by identifying potential false positives before incurring the expense of followup. Of particular concern are cell-based reporter gene assays (RGAs) where the number of hits may be prohibitively high to be scrutinized manually for weeding out erroneous data.

View Article and Find Full Text PDF

This work describes a novel semi-sequential technique for in silico enhancement of high-throughput screening (HTS) experiments now employed at Novartis. It is used in situations in which the size of the screen is limited by the readout (e.g.

View Article and Find Full Text PDF

Farnesyl transferase inhibitors (FTI) exhibit anticancer activity as a single agent in preclinical studies and show promise in combination with other therapeutics in clinical trials. Previous studies show that FTIs arrest cancer cells in mitosis; however, the mechanism by which this occurs is unclear. Here, we observed that treatment of various cancer cell lines with the FTI lonafarnib caused mitotic chromosomal alignment defects, leaving cells in a pseudometaphase state, whereby both aligned chromosomes and chromosomes juxtaposed to the spindle poles (termed "lagging chromosomes") were observed in the same cell.

View Article and Find Full Text PDF

Development of a pharmacophore hypothesis related to small-molecule activity is pivotal to chemical optimization of a series, since it defines features beneficial or detrimental to activity. Although crystal structures may provide detailed 3D interaction information for one molecule with its receptor, docking a different ligand to that model often leads to unreliable results due to protein flexibility. Graham Richards' lab was one of the first groups to utilize "fuzzy" pattern recognition algorithms taken from the field of image processing to solve problems in protein modeling.

View Article and Find Full Text PDF

Bridging chemical and biological space is the key to drug discovery and development. Typically, cheminformatics methods operate under the assumption that similar chemicals have similar biological activity. Ideally then, one could predict a drug's biological function(s) given only its chemical structure by similarity searching in libraries of compounds with known activities.

View Article and Find Full Text PDF

Conventional similarity searching of molecules compares single (or multiple) active query structures to each other in a relative framework, by means of a structural descriptor and a similarity measure. While this often works well, depending on the target, we show here that retrieval rates can be improved considerably by incorporating an external framework describing ligand bioactivity space for comparisons ("Bayes affinity fingerprints"). Structures are described by Bayes scores for a ligand panel comprising about 1000 activity classes extracted from the WOMBAT database.

View Article and Find Full Text PDF

We studied in silico docking of noscapine onto tubulin, combined with calculations of surface charge, pi-pi, van der Waals, and hydrogen bonding interactions, to rationally design a new compound, EM015. This tubulin-binding semisynthetic compound is a selective and potent anti-breast cancer agent and displays a 20-fold lower IC(50) against many tumor cells compared with our founding compound, (S)-6,7-dimethoxy-3-((R)-4-methoxy-6-methyl-5,6,7,8-tetrahydro[1,3]-dioxolo-[4,5-g]isoquinolin-5-yl)isobenzo-furan-1(3H)-one (noscapine). Furthermore, EM015 is also effective against a variety of drug-resistant cells.

View Article and Find Full Text PDF