Publications by authors named "James Needham"

Anthrax lethal factor (LF) is one of the enzymatic components of the anthrax toxin responsible for the pathogenic responses of the anthrax disease. The ability to screen multiplexed ligands against LF and subsequently estimate the effective kinetic rates (kon and koff) and complementary binding behavior provides critical information useful in diagnostic and therapeutic development for anthrax. Tools such as biolayer interferometry (BLI) and surface plasmon resonance imaging (SPRi) have been developed for this purpose; however, these tools suffer from limitations such as signal jumps when the solution in the chamber is switched or low sensitivity.

View Article and Find Full Text PDF

The determination of kinetic information and appropriate binding pairs is fundamental to the proper optimization and selection of ligands used in immunoassays, diagnostics, and therapeutics. However, the ability to estimate such parameters in a multiplexed and inexpensive format remains difficult and modification of the ligand is often necessary. Here, we detail the methods and materials necessary to evaluate hundreds of unlabeled ligands simultaneously using the interferometric reflectance imaging sensor (IRIS).

View Article and Find Full Text PDF

In December of 2013, chikungunya virus (CHIKV), an alphavirus in the family Togaviridae, was introduced to the island of Saint Martin in the Caribbean, resulting in the first autochthonous cases reported in the Americas. As of January 2015, local and imported CHIKV has been reported in 50 American countries with over 1.1 million suspected cases.

View Article and Find Full Text PDF

Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure.

View Article and Find Full Text PDF

A hyperspectral Fourier transform spectrometer has been developed for studying biological material bound to optically reflecting surfaces. This instrument has two modes of operation: a white-light reflection mode and a spectral self-interference fluorescence mode. With the combined capability, information about the conformation of an ensemble of biomolecules may be determined.

View Article and Find Full Text PDF

Direct monitoring of primary molecular-binding interactions without the need for secondary reactants would markedly simplify and expand applications of high-throughput label-free detection methods. A simple interferometric technique is presented that monitors the optical phase difference resulting from accumulated biomolecular mass. As an example, 50 spots for each of four proteins consisting of BSA, human serum albumin, rabbit IgG, and protein G were dynamically monitored as they captured corresponding antibodies.

View Article and Find Full Text PDF

The resonant cavity imaging biosensor (RCIB) is an optical technique for detecting molecular binding interactions label free at many locations in parallel that employs an optical resonant cavity for high sensitivity. Near-infrared light centered at 1512.5 nm couples resonantly through a Fabry-Perot cavity constructed from dielectric reflectors (Si/SiO(2)), one of which serves as the binding surface.

View Article and Find Full Text PDF

Because increasing numbers of HIV vaccine candidates are being tested globally, it is essential to differentiate vaccine- from virus-induced antibodies. Most of the currently tested vaccines contain multiple viral components. As a result, many vaccine recipients give positive results in FDA-licensed HIV serodetection tests.

View Article and Find Full Text PDF

All current human immunodeficiency virus (HIV) vaccine candidates contain multiple viral components and elicit antibodies that react positively in licensed HIV diagnostic tests, which contain similar viral products. Thus, vaccine trial participants could be falsely diagnosed as infected with HIV. Additionally, uninfected, seropositive vaccinees may encounter long-term social and economic harms.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "James Needham"

  • James Needham's research primarily focuses on developing advanced biosensing technologies for the detection of biomolecular interactions, particularly in relation to infectious diseases like anthrax and chikungunya.
  • His studies emphasize the importance of high-sensitivity and multiplexed measurement techniques, such as interferometric reflectance imaging sensors, to better understand antibody affinity and improve diagnostic methods.
  • Notable findings include the creation of rapid immunoassays for timely diagnosis of inhalational anthrax and novel approaches to differentiate vaccine-generated antibodies from actual infections in HIV vaccine trials.