In diabetes mellitus (DM), the kidneys are exposed to increased levels of hyperglycemia-induced oxidative stress. Elevated amounts of reactive oxygen species (ROS) are believed to provoke ultrastructural changes in kidney tissue and can eventually result in DM late complications such as diabetic nephropathy. While it is reported that glucagon-like peptide 1 receptors (GLP-1R) are present in the kidney vasculature, the effects of GLP-1 on the kidney proteome in DM is not well described.
View Article and Find Full Text PDFPeptide agonists acting on the glucagon-like peptide 1 receptor (GLP-1R) promote glucose-dependent insulin release and therefore represent important therapeutic agents for type 2 diabetes (T2D). Previous data indicated that an N-terminal type II β-turn motif might be an important feature for agonists acting on the GLP-1R. In contrast, recent publications reporting the structure of the full-length GLP-1R have shown the N-terminus of receptor-bound agonists in an α-helical conformation.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a worldwide disease that affects 9% of the adult world population and type 2 DM accounts for 90% of those. A common consequence of DM is kidney complications, which could lead to kidney failure. We studied the potential effects of treatment with insulin and the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide on the diabetic kidney proteome through the use of the db/db mouse model system and mass spectrometry (MS).
View Article and Find Full Text PDFBackground: Diabetic nephropathy (DN) is a late complication in both type 1 diabetes mellitus (T1DM) and T2DM. Already at an early stage of DN morphological changes occur at the cell surface and in the extracellular matrix where the majority of the proteins carry N-linked glycosylations. These glycosylated proteins are highly important in cell adhesion and cell-matrix processes but not much is known about how they change in DN or whether the distinct etiology of T1DM and T2DM could have an effect on their abundances.
View Article and Find Full Text PDFBackground: In this study we evaluated the association of baseline levels of six different candidate proteins for the development of microalbuminuria and macroalbuminuria in type 1 diabetic patients, who were followed for approximately 30 years. Two of the proteins are markers of inflammation: serum amyloid A (SAA) and C-reactive protein (CRP), three are involved in lipid metabolism: apolipoprotein A1, apolipoprotein E and adiponectin and the last protein, fibronectin, is related to structural changes.
Methods: A nested case control study population of 60 patients from an inception cohort of type 1 diabetic patients where 20 developed microalbuminuria followed by macroalbuminuria and 40 stayed normoalbuminuric during approximately 30 years of follow-up time was used to evaluate baseline levels of the six candidate biomarkers.
Microparticles and exosomes are two of the most well characterized membrane-derived microvesicles released either directly from the plasma membrane or released through the fusion of intracellular multivesicular bodies with the plasma membrane, respectively. They are thought to be involved in many significant biological processes such as cell to cell communication, rescue from apoptosis, and immunological responses. Here we report for the first time a quantitative study of proteins from β-cell-derived microvesicles generated after cytokine induced apoptosis using stable isotope labeled amino acids in cell culture combined with mass spectrometry.
View Article and Find Full Text PDFUnderstanding early determinants of type 2 diabetes is essential for refining disease prevention strategies. Proteomic technology may provide a useful approach to identify novel protein patterns potentially related to pathophysiological changes that lead up to diabetes. In this study, we sought to identify protein signals that are associated with diabetes incidence in a middle-aged population.
View Article and Find Full Text PDFPurpose And Experimental Design: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease and improved biomarkers would help identify high-risk individuals. The aim of this study was to discover candidate biomarkers for DN in the plasma peptidome in an in-house cross-sectional cohort (n=122) of type 1 diabetic patients diagnosed with normo-, micro-, and macroalbuminuria.
Results: Automated, high-throughput, and reproducible (interassay median CV: 13-14%) plasma peptide profiling protocols involving RPC18 and weak cation exchange magnetic beads on a liquid handling workstation with a MALDI-TOF-MS readout were successfully established.
INTRODUCTION: As part of a clinical proteomics programme focused on diabetes and its complications, it was our goal to investigate the proteome of plasma in order to find improved candidate biomarkers to predict diabetic nephropathy. METHODS: Proteins derived from plasma from a cross-sectional cohort of 123 type 1 diabetic patients previously diagnosed as normoalbuminuric, microalbuminuric or macroalbuminuric were enriched with hexapeptide library beads and subsequently pooled within three groups. Proteins from the three groups were compared by online liquid chromatography and tandem mass spectrometry in three identical repetitions using isobaric mass tags (iTRAQ).
View Article and Find Full Text PDFCombining samples from a national neonatal screening programme with the information from a national health registry allow for unique opportunities in analysing newborn blood for protein changes that could predict eventual disease development. A nested case-control cohort (n = 54 cases, 108 controls) was analysed by proteomics as a new way of looking for biomarkers that could bolster prediction of T1D risk in newborns. Protein extraction and haemoglobin depletion were automated and samples were processed and analysed by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS).
View Article and Find Full Text PDFCerebrospinal fluid (CSF) is an ideal biological material in which to search for new biomarkers for improved diagnosis of neurological diseases. During a lumbar puncture between 5 and 15 mL of CSF are obtained. Previous studies have assessed the ventriculo-lumbar concentration gradient of a number of specific proteins.
View Article and Find Full Text PDFBackground: As part of a clinical proteomics program focused on diabetes and its complications we are looking for new and better protein biomarkers for diabetic nephropathy. The search for new and better biomarkers for diabetic nephropathy has, with a few exceptions, previously focused on either hypothesis-driven studies or urinary based investigations. To date only two studies have investigated the proteome of blood in search for new biomarkers, and these studies were conducted in sera from patients with type 2 diabetes.
View Article and Find Full Text PDFBrief Funct Genomic Proteomic
January 2008
Biomarker discovery in clinical proteomics is being performed on relatively large patient cohorts by utilizing the high throughput of laser desorption/ionization mass spectrometry (MALDI- and SELDI-TOF-MS). Dealing directly with patient samples as opposed to working in cell or animal systems requires a host of considerations both before and after mass spectrometric analysis to obtain robust biomarker candidates. The challenges associated with the heterogeneity of typical samples are amplified by the ability to detect hundreds to thousands of proteins simultaneously.
View Article and Find Full Text PDFThe amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms possesses very different thermal properties. The B.
View Article and Find Full Text PDF