Introduction: GWAS have identified multiple regions that confer risk for juvenile idiopathic arthritis (JIA). However, identifying the single nucleotide polymorphisms (SNPs) that drive disease risk is impeded by the SNPs' that identify risk loci being in linkage disequilibrium (LD) with hundreds of other SNPs. Since the causal SNPs remain unknown, it is difficult to identify target genes and use genetic information to inform patient care.
View Article and Find Full Text PDFBackground: Although genome-wide association studies (GWAS) have identified multiple regions conferring genetic risk for juvenile idiopathic arthritis (JIA), we are still faced with the task of identifying the single nucleotide polymorphisms (SNPs) on the disease haplotypes that exert the biological effects that confer risk. Until we identify the risk-driving variants, identifying the genes influenced by these variants, and therefore translating genetic information to improved clinical care, will remain an insurmountable task. We used a function-based approach for identifying causal variant candidates and the target genes on JIA risk haplotypes.
View Article and Find Full Text PDFBackground/purpose: Knowledge of the 3D genome is essential to elucidate genetic mechanisms driving autoimmune diseases. The 3D genome is distinct for each cell type, and it is uncertain whether cell lines faithfully recapitulate the 3D architecture of primary human cells or whether developmental aspects of the pediatric immune system require use of pediatric samples. We undertook a systematic analysis of B cells and B cell lines to compare 3D genomic features encompassing risk loci for juvenile idiopathic arthritis (JIA), systemic lupus (SLE), and type 1 diabetes (T1D).
View Article and Find Full Text PDFObjective: To review the literature regarding systemic lupus erythematosus (SLE) in American Indian/Alaska Native (AI/AN) people and relate prevalence and/or disease severity to our emerging understanding of the biology of trauma and toxic stress.
Methods: We conducted a search and review of the literature using search terms "lupus and American Indians" "ACEs and disease outcome" "Biology of Adversity" "lupus and ACE scores," " lupus and childhood abuse." These search criteria were entered into Google Scholar and articles retrieved from PubMed, NBCI.
Objectives: AECAs are detected in multiple forms of vasculitis or vasculopathy, including JDM. High levels of tropomyosin alpha-4 chain (TPM4) gene expression in cutaneous lesions and TPM4 protein expression in some endothelial cells (ECs) have been proven. Furthermore, the presence of autoantibodies to tropomyosin proteins have been discovered in DM.
View Article and Find Full Text PDFIntroduction: Genome wide association studies (GWAS) have identified multiple regions that confer genetic risk for the polyarticular/oligoarticular forms of juvenile idiopathic arthritis (JIA). However, genome-wide scans do not identify the cells impacted by genetic polymorphisms on the risk haplotypes or the genes impacted by those variants. We have shown that genetic variants driving JIA risk are likely to affect both innate and adaptive immune functions.
View Article and Find Full Text PDFPurpose Of Review: To describe differences in disease manifestations and outcomes in pediatric rheumatic diseases as they occur in non-European-descended populations in North America.
Recent Findings: Differences in disease prevalence, clinical phenotypes, disease course, and outcomes have been described across the spectrum of pediatric-onset rheumatic diseases. Although these differences are commonly explained by differences in genetic risk or access to tertiary healthcare facilities, our emerging understanding of the immunobiology of historical/ongoing trauma suggest a more complex explanation for these observed differences.
Genome-wide association studies (GWAS) have identified numerous stroke-associated SNPs. To understand how SNPs affect gene expression related to increased stroke risk, we studied epigenetic landscapes surrounding 26 common, validated stroke-associated loci. We mapped the SNPs to linkage disequilibrium (LD) blocks and examined H3K27ac, H3K4me1, H3K9ac, and H3K4me3 histone marks and transcription-factor binding-sites in pathologically relevant cell types (hematopoietic and vascular cells).
View Article and Find Full Text PDFObjectives: JDM is an inflammatory myopathy characterized by prominent vasculopathy. AECAs are frequently detected in inflammatory and autoimmune diseases. We sought to determine whether AECAs correlate with clinical features of JDM, and thus serve as biomarkers to guide therapy or predict outcome.
View Article and Find Full Text PDFPeripheral blood mononuclear cells (PBMCs) play an important role in the inflammation that accompanies intracranial aneurysm (IA) pathophysiology. We hypothesized that PBMCs have different transcriptional profiles in patients harboring IAs as compared to IA-free controls, which could be the basis for potential blood-based biomarkers for the disease. To test this, we isolated PBMC RNA from whole blood of 52 subjects (24 with IA, 28 without) and performed next-generation RNA sequencing to obtain their transcriptomes.
View Article and Find Full Text PDFBackground: Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with increased risk for intracranial aneurysm (IA). However, how such variants affect gene expression within IA is poorly understood. We used publicly-available ChIP-Seq data to study chromatin landscapes surrounding risk loci to determine whether IA-associated SNPs affect functional elements that regulate gene expression in cell types comprising IA tissue.
View Article and Find Full Text PDFBackground: Genetic variants in the human leukocyte antigen (HLA) locus contribute to the risk for developing scleroderma/systemic sclerosis (SSc). However, there are other replicated loci that also contribute to genetic risk for SSc, and it is unknown whether genetic risk in these non-HLA loci acts primarily on the vasculature, immune system, fibroblasts, or other relevant cell types. We used the Cistrome database to investigate the epigenetic landscapes surrounding 11 replicated SSc associated loci to determine whether SNPs in these loci may affect regulatory elements and whether they are likely to impact a specific cell type.
View Article and Find Full Text PDFJuvenile idiopathic arthritis (JIA) is one of the most common chronic diseases in children. While clinical outcomes for patients with juvenile JIA have improved, the underlying biology of the disease and mechanisms underlying therapeutic response/non-response are poorly understood. We have shown that active JIA is associated with distinct transcriptional abnormalities, and that the attainment of remission is associated with reorganization of transcriptional networks.
View Article and Find Full Text PDFBackground: The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemorrhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA expression signature of circulating neutrophils, and used transcriptome data to build predictive models for unruptured IAs. In this study, we evaluate the feasibility of using whole blood transcriptomes to predict the presence of unruptured IAs.
View Article and Find Full Text PDFBackground: Intracranial aneurysms (IAs) are dangerous because of their potential to rupture. We previously found significant RNA expression differences in circulating neutrophils between patients with and without unruptured IAs and trained machine learning models to predict presence of IA using 40 neutrophil transcriptomes. Here, we aim to develop a predictive model for unruptured IA using neutrophil transcriptomes from a larger population and more robust machine learning methods.
View Article and Find Full Text PDFBackground And Objective: Long non-coding RNAs (lncRNAs) may serve as biomarkers for complex disease states, such as intracranial aneurysms. In this study, we investigated lncRNA expression differences in the whole blood of patients with unruptured aneurysms.
Methods: Whole blood RNA from 67 subjects (34 with aneurysm, 33 without) was used for next-generation RNA sequencing.
Objective: The risk loci for juvenile idiopathic arthritis (JIA) consist of extended haplotypes that include functional elements in addition to canonical coding genes. As with most autoimmune diseases, the risk haplotypes for JIA are highly enriched for H3K4me1/H3K27ac histone marks, epigenetic signatures that typically identify poised or active enhancers. In this study, we test the hypothesis that genetic risk for JIA is exerted through altered enhancer-mediated gene regulation.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is an autoimmune disease that is a challenge to diagnose and treat. There is an urgent need for biomarkers to help define organ involvement, and more effective therapies. A unique population of T cells, the CD3CD4CD8 (DNeg) cells, is significantly increased in lupus patients.
View Article and Find Full Text PDFBackground: The response to treatment for juvenile idiopathic arthritis (JIA) can be staged using clinical features. However, objective laboratory biomarkers of remission are still lacking. In this study, we used machine learning to predict JIA activity from transcriptomes from peripheral blood mononuclear cells (PBMCs).
View Article and Find Full Text PDFBackground: Genetics play an important role in intracranial aneurysm (IA) pathophysiology. Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are linked to IA but how they affect disease pathobiology remains poorly understood. We used Encyclopedia of DNA Elements (ENCODE) data to investigate the epigenetic landscapes surrounding genetic risk loci to determine if IA-associated SNPs affect functional elements that regulate gene expression and if those SNPs are most likely to impact a specific type of cells.
View Article and Find Full Text PDFCurr Opin Rheumatol
November 2019
Purpose Of Review: One of the most important advances in medical research over the past 20 years has been the emergence of technologies to assess complex biological processes on a global scale. Although a great deal of attention has been given to genome-scale genetics and genomics technologies, the utility of studying the proteome in a comprehensive way is sometimes under-appreciated. In this review, we discuss recent advances in proteomics as applied to dermatomyositis/polymyositis as well as findings from other inflammatory diseases that may enlighten our understanding of dermatomyositis/polymyositis.
View Article and Find Full Text PDFBackground: The pathology of juvenile dermatomyositis (JDM) is characterized by prominent vessel wall and perivascular inflammation. This feature of the disease has remained unexplained and under-investigated. We have hypothesized that plasma exosomes, which play an important role in inter-cellular communication, may play a role in the vascular injury associated with JDM.
View Article and Find Full Text PDF