Modern virtual reality (VR) devices record six-degree-of-freedom kinematic data with high spatial and temporal resolution and display high-resolution stereoscopic three-dimensional graphics. These capabilities make VR a powerful tool for many types of behavioural research, including studies of sensorimotor, perceptual and cognitive functions. Here we introduce Ouvrai, an open-source solution that facilitates the design and execution of remote VR studies, capitalizing on the surge in VR headset ownership.
View Article and Find Full Text PDFThe brain can generate actions, such as reaching to a target, using different movement strategies. We investigate how such strategies are learned in a task where perched head-fixed mice learn to reach to an invisible target area from a set start position using a joystick. This can be achieved by learning to move in a specific direction or to a specific endpoint location.
View Article and Find Full Text PDFWeight prediction is critical for dexterous object manipulation. Previous work has focused on lifting objects presented in isolation and has examined how the visual appearance of an object is used to predict its weight. Here we tested the novel hypothesis that when interacting with multiple objects, as is common in everyday tasks, people exploit the locations of objects to directly predict their weights, bypassing slower and more demanding processing of visual properties to predict weight.
View Article and Find Full Text PDFThe ability to predict the dynamics of objects, linking applied force to motion, underlies our capacity to perform many of the tasks we carry out on a daily basis. Thus, a fundamental question is how the dynamics of the myriad objects we interact with are organized in memory. Using a custom-built three-dimensional robotic interface that allowed us to simulate objects of varying appearance and weight, we examined how participants learned the weights of sets of objects that they repeatedly lifted.
View Article and Find Full Text PDFSkillful manipulation requires forming memories of object dynamics, linking applied force to motion. Although it has been assumed that such memories are linked to objects, a recent study showed that people can form separate memories when these are linked to different controlled points on an object (Heald JB, Ingram JN, Flanagan JR, Wolpert DM. 2: 300-311, 2018).
View Article and Find Full Text PDFThe adaption of movement to changes in the environment varies across life span. Recent evidence has linked motor adaptation and its reduction with age to differences in "explicit" learning processes. We examine differences in brain structure and cognition underlying motor adaptation in a population-based cohort (n = 322, aged 18-89 years) using a visuomotor learning task and structural magnetic resonance imaging.
View Article and Find Full Text PDFThe concept of objects is fundamental to cognition and is defined by a consistent set of sensory properties and physical affordances. Although it is unknown how the abstract concept of an object emerges, most accounts assume that visual or haptic boundaries are crucial in this process. Here, we tested an alternative hypothesis that boundaries are not essential but simply reflect a more fundamental principle: consistent visual or haptic statistical properties.
View Article and Find Full Text PDFCognitive decision-making is known to be sensitive to the values of potential options, which are the probability and size of rewards associated with different choices. Here, we examine whether rapid motor responses to perturbations of visual feedback about movement, which mediate low-level and involuntary feedback control loops, reflect computations associated with high-level value-based decision-making. In three experiments involving human participants, we varied the value associated with different potential targets for reaching movements by controlling the distributions of rewards across the targets (Experiment 1), the probability with which each target could be specified (Experiment 2), or both (Experiment 3).
View Article and Find Full Text PDFKnowledge about a tool's dynamics can be acquired from the visual configuration of the tool and through physical interaction. Here, we examine how visual information affects the generalization of dynamic learning during tool use. Subjects rotated a virtual hammer-like object while we varied the object dynamics separately for two rotational directions.
View Article and Find Full Text PDFSkillful manipulation requires forming and recalling memories of the dynamics of objects linking applied force to motion. It has been assumed that such memories are associated with entire objects. However, we often control different locations on an object, and these locations may be associated with different dynamics.
View Article and Find Full Text PDFSensorimotor learning typically shows generalization from one context to another. Models of sensorimotor learning characterize this with a fixed generalization function that couples learning between contexts. Here we examine whether such coupling is indeed fixed or changes with experience.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFAbnormal initiation and control of voluntary movements are among the principal manifestations of Parkinson's disease (PD). However, the processes underlying these abnormalities and their potential remediation by dopamine treatment remain poorly understood. Normally, movements depend on the integration of sensory information with the predicted consequences of action.
View Article and Find Full Text PDFMotor imagery, that is the mental rehearsal of a motor skill, can lead to improvements when performing the same skill. Here we show a powerful and complementary role, in which motor imagery of different movements after actually performing a skill allows learning that is not possible without imagery. We leverage a well-studied motor learning task in which subjects reach in the presence of a dynamic (force-field) perturbation.
View Article and Find Full Text PDFCurrent models of sensorimotor control posit that motor commands are generated by combining multiple modules which may consist of internal models, motor primitives or motor synergies. The mechanisms which select modules based on task requirements and modify their output during learning are therefore critical to our understanding of sensorimotor control. Here we develop a novel modular architecture for multi-dimensional tasks in which a set of fixed primitives are each able to compensate for errors in a single direction in the task space.
View Article and Find Full Text PDFThe control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation-a reduction in the perceived intensity of sensations from self-generated compared with external actions.
View Article and Find Full Text PDFHumans are able to adapt their motor commands to make accurate movements in novel sensorimotor environments, such as when wielding tools that alter limb dynamics. However, it is unclear to what extent sensorimotor representations, obtained through experience with one limb, are available to the opposite, untrained limb and in which form they are available. Here, we compared crosslimb transfer of force-field compensation after participants adapted to a velocity-dependent curl field, oriented either in the sagittal or the transverse plane.
View Article and Find Full Text PDFAfter committing to an action, a decision-maker can change their mind to revise the action. Such changes of mind can even occur when the stream of information that led to the action is curtailed at movement onset. This is explained by the time delays in sensory processing and motor planning which lead to a component at the end of the sensory stream that can only be processed after initiation.
View Article and Find Full Text PDFCurrent models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts.
View Article and Find Full Text PDFReal-world tasks often require movements that depend on a previous action or on changes in the state of the world. Here we investigate whether motor memories encode the current action in a manner that depends on previous sensorimotor states. Human subjects performed trials in which they made movements in a randomly selected clockwise or counterclockwise velocity-dependent curl force field.
View Article and Find Full Text PDFMotor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies.
View Article and Find Full Text PDFHuman sensorimotor control has been predominantly studied using fixed tasks performed under laboratory conditions. This approach has greatly advanced our understanding of the mechanisms that integrate sensory information and generate motor commands during voluntary movement. However, experimental tasks necessarily restrict the range of behaviors that are studied.
View Article and Find Full Text PDFRhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path.
View Article and Find Full Text PDFMotor control strongly relies on neural processes that predict the sensory consequences of self-generated actions. Previous research has demonstrated deficits in such sensory-predictive processes in schizophrenic patients and these low-level deficits are thought to contribute to the emergence of delusions of control. Here, we examined the extent to which individual differences in sensory prediction are associated with a tendency towards delusional ideation in healthy participants.
View Article and Find Full Text PDF