Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes) have mutations in the gene encoding β1,3-glucosyltransferase (B3GLCT). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats.
View Article and Find Full Text PDFRecent studies emphasize the importance of mRNA splicing in human genetic disease, as 20-30% of all disease-causing mutations are predicted to result in mRNA splicing defects. The plasticity of the mRNA splicing reaction has made these mutations attractive candidates for the development of therapeutics. Familial dysautonomia (FD) is a severe neurodegenerative disorder, and all patients have an intronic IVS20+6T>C splice site mutation in the IKBKAP gene, which results in tissue-specific skipping of exon 20 and a corresponding reduction in ikappaB kinase complex associated protein (IKAP) levels.
View Article and Find Full Text PDFFamilial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex-associated protein/elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase WT IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine whether oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation.
View Article and Find Full Text PDFFamilial dysautonomia (FD), a devastating hereditary sensory and autonomic neuropathy, results from an intronic mutation in the IKBKAP gene that disrupts normal mRNA splicing and leads to tissue-specific reduction of IKBKAP protein (IKAP) in the nervous system. To better understand the roles of IKAP in vivo, an Ikbkap knockout mouse model was created. Results from our study show that ablating Ikbkap leads to embryonic lethality, with no homozygous Ikbkap knockout (Ikbkap(-)(/)(-)) embryos surviving beyond 12.
View Article and Find Full Text PDFThe common familial dysautonomia (FD) mutation results in tissue specific mis-splicing with reduced amount of wild-type (WT) IkappaB kinase associated protein gene (IKBKAP) mRNA and ELP1. ELP1 is a subunit of Elongator, formerly called the IkappaB kinase associated protein (IKAP) protein. We measured IKBKAP mRNA in peripheral blood leukocytes to determine whether FD subjects and carriers have characteristic levels.
View Article and Find Full Text PDFFamilial dysautonomia (FD) is a severe hereditary sensory and autonomic neuropathy, and all patients with FD have a splice mutation in the IKBKAP gene. The FD splice mutation results in variable, tissue-specific skipping of exon 20 in IKBKAP mRNA, which leads to reduced IKAP protein levels. The development of therapies for FD will require suitable mouse models for preclinical studies.
View Article and Find Full Text PDFMutations that affect the splicing of pre-mRNA are a major cause of human disease. Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a T to C transition at base pair 6 of IKBKAP intron 20. This mutation results in variable tissue-specific skipping of exon 20.
View Article and Find Full Text PDFThe common familial dysautonomia (FD) mutation causes a splicing defect that leads to production of both wild-type (WT) and mutant (MU) IKBKAP mRNA. Because drugs may alter splicing, seven drugs, fludrocortisone, midodrine, diazepam, albuterol, clonidine, caffeine, and dopamine were screened. Since only fludrocortisone negatively altered gene expression, we assessed fludrocortisone's efficacy in treating postural hypotension, and its effect on survival and secondary long-term FD problems.
View Article and Find Full Text PDFThe defective splicing of pre-mRNA is a major cause of human disease. Exon skipping is a common result of splice mutations and has been reported in a wide variety of genetic disorders, yet the underlying mechanism is poorly understood. Often, such mutations are incompletely penetrant, and low levels of normal transcript and protein are maintained.
View Article and Find Full Text PDFFamilial Dysautonomia is an autosomal recessive disease with a remarkably high carrier frequency in the Ashkenazi Jewish population. It has recently been estimated that as many as 1 in 27 Ashkenazi Jews is a carrier of FD. The FD gene has been identified as IKBKAP, and two disease-causing mutations have been identified.
View Article and Find Full Text PDFWe recently identified a mutation in the I-kappa B kinase associated protein (IKBKAP) gene as the major cause of familial dysautonomia (FD), a recessive sensory and autonomic neuropathy. This alteration, located at base pair 6 of the intron 20 donor splice site, is present on >99.5% of FD chromosomes and results in tissue-specific skipping of exon 20.
View Article and Find Full Text PDF