A comprehensive mechanistic study of electrocatalytic CO reduction by ruthenium 2,2':6',2″-terpyridine (tpy) pyridyl-carbene catalysts reveals the importance of stereochemical control to locate the strongly donating N-heterocyclic carbene ligand trans to the site of CO activation. Computational studies were undertaken to predict the most stable isomer for a range of reasonable intermediates in CO reduction, suggesting that the ligand trans to the reaction site plays a key role in dictating the energetic profile of the catalytic reaction. A new isomer of [Ru(tpy)(Mebim-py)(NCCH)] (Mebim-py is 1-methylbenzimidazol-2-ylidene-3-(2'-pyridine)) and both isomers of the catalytic intermediate [Ru(tpy)(Mebim-py)(CO)] were synthesized and characterized.
View Article and Find Full Text PDFThe cobalt complexes CoL1(PF) (1; L1 = 2,6-bis[2-(2,2'-bipyridin-6'-yl)ethyl]pyridine) and CoL2(PF) (2; L2 = 2,6-bis[2-(4-methoxy-2,2'-bipyridin-6'-yl)ethyl]pyridine) were synthesized and used for photocatalytic CO reduction in acetonitrile. X-ray structures of complexes 1 and 2 reveal distorted trigonal-bipyramidal geometries with all nitrogen atoms of the ligand coordinated to the Co(II) center, in contrast to the common six-coordinate cobalt complexes with pentadentate polypyridine ligands, where a monodentate solvent completes the coordination sphere. Under electrochemical conditions, the catalytic current for CO reduction was observed near the Co(I/0) redox couple for both complexes 1 and 2 at E = -1.
View Article and Find Full Text PDFTo develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h at 60 °C. A constant rate (TOF>35 000 h ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.
View Article and Find Full Text PDFPentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity toward CO hydrogenation in 2.0 m KHCO aqueous solutions (pH 8.
View Article and Find Full Text PDFWe prepared electron-rich derivatives of [Ir(tpy)(ppy)Cl] with modification of the bidentate (ppy) or tridentate (tpy) ligands in an attempt to increase the reactivity for CO reduction and the ability to transfer hydrides (hydricity). Density functional theory (DFT) calculations reveal that complexes with dimethyl-substituted ppy have similar hydricities to the non-substituted parent complex, and photocatalytic CO reduction studies show selective CO formation. Substitution of tpy by bis(benzimidazole)-phenyl or -pyridine (L3 and L4, respectively) induces changes in the physical properties that are much more pronounced than from the addition of methyl groups to ppy.
View Article and Find Full Text PDFA series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two -OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO and release H under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO can be efficiently carried out under CO and H at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h and a turnover number of 7280 at 25 °C, which are higher than ever reported.
View Article and Find Full Text PDFRuthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2″-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)](2+) generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2015
We prepared two geometric isomers of [Ir(tpy)(ppy)H](+), previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground- and excited-state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C-trans-[Ir(tpy)(ppy)H](+), reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3CN/TEOA, a common reactive C-trans-[Ir(tpy)(ppy)](0) species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.
View Article and Find Full Text PDFThe ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. While the basic mechanism of proton reduction promoted by cobalt species is well-understood, the reactivity of certain reaction intermediates, such as Co(I) and Co(III)-H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH2)](n+) (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH2)](n+) where L is the pentadentate DPA-Bpy ligand or [Co(OH2)](n+) as a shorthand).
View Article and Find Full Text PDFProton responsive ligands offer control of catalytic reactions through modulation of pH-dependent properties, second coordination sphere stabilization of transition states, or by providing a local proton source for multiproton, multielectron reactions. Two fac-[Re(I)(α-diimine)(CO)3Cl] complexes with α-diimine = 4,4'- (or 6,6'-) dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP) have been prepared and analyzed as electrocatalysts for the reduction of carbon dioxide. Consecutive electrochemical reduction of these complexes yields species identical to those obtained by chemical deprotonation.
View Article and Find Full Text PDFThe catalytic cycle for the production of formic acid by CO2 hydrogenation and the reverse reaction have received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO2 hydrogenation catalyzed by iridium complexes bearing sophisticated N^N-bidentate ligands is reported. We describe how a ligand containing hydroxy groups as proton-responsive substituents enhances the catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interactions.
View Article and Find Full Text PDFWe describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)2] including X-ray structure of intermediates and their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)2], revealing key features unavailable from solution studies with sacrificial oxidants.
View Article and Find Full Text PDFA first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water.
View Article and Find Full Text PDFThe reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we analyze the low-energy electronic absorption bands of two cobaloxime systems experimentally and use a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.
View Article and Find Full Text PDFAlternatives to platinum-based catalysts are required to sustainably produce hydrogen from water at low overpotentials. Progress has been made in utilizing tungsten carbide-based catalysts, however, their performance is currently limited by the density and reactivity of active sites, and insufficient stability in acidic electrolytes. We report highly active graphene nanoplatelet-supported tungsten carbide-nitride nanocomposites prepared via an in situ solid-state approach.
View Article and Find Full Text PDFHighly efficient hydrogen generation from dehydrogenation of formic acid is achieved by using bioinspired iridium complexes that have hydroxyl groups at the ortho positions of the bipyridine or bipyrimidine ligand (i.e., OH in the second coordination sphere of the metal center).
View Article and Find Full Text PDFThe GaN/ZnO alloy functions as a visible-light photocatalyst for splitting water into hydrogen and oxygen. As a first step toward understanding the mechanism and energetics of water-splitting reactions, we investigate the microscopic structure of the aqueous interfaces of the GaN/ZnO alloy and compare them with the aqueous interfaces of pure GaN and ZnO. Specifically, we have studied the (101̄0) surface of GaN and ZnO and the (101̄0) and (12̄10) surfaces of the 1 : 1 GaN/ZnO alloy.
View Article and Find Full Text PDFThe reactivity of a rhenium complex containing an NAD(+) model ligand was examined toward photochemical formation of the corresponding NADH-like dihydro form of the complex and electrochemical CO2 reduction. The hydricity of the NADH-like complex was estimated by a thermodynamic cycle and reaction with Ph3C(+).
View Article and Find Full Text PDFNew water-soluble pentamethylcyclopentadienyl cobalt(III) complexes with proton-responsive 4,4'- and 6,6'-dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP, respectively) ligands have been prepared and were characterized by X-ray crystallography, UV-vis and NMR spectroscopy, and mass spectrometry. These cobalt(III) complexes with proton-responsive ligands predominantly exist in their deprotonated [Cp*Co(DHBP-2H(+))(OH2)] forms with stronger electron-donating properties in neutral and basic solutions, and are active catalysts for CO2 hydrogenation in aqueous bicarbonate media at moderate temperature under a total 4-5 MPa (CO2:H2 1:1) pressure. The cobalt complexes containing 4DHBP ligands ([1-OH2](2+) and [1-Cl](+), where 1 = Cp*Co(4DHBP)) display better thermal stability and exhibit notable catalytic activity for CO2 hydrogenation to formate in contrast to the catalytically inactive nonsubstituted bpy analogues [3-OH2](2+) (3 = Cp*Co(bpy)).
View Article and Find Full Text PDFThe production of hydrogen by the electrolysis of water, a sustainable and greenhouse-gas-free source, requires an efficient and abundant electrocatalyst that minimizes energy consumption. Interest in transition metal carbides and nitrides has been aroused by their promising properties that make them potential substitutes for Pt-group metals as catalysts for the hydrogen evolution reaction. In this review, we discuss systematically the recent progress in the development of group IV-VI metal carbides and nitrides toward the hydrogen evolution reaction.
View Article and Find Full Text PDFThe catalytic water oxidation mechanism proposed for many single-site ruthenium complexes proceeds via the nucleophilic attack of a water molecule on the Ru(V)═O species. In contrast, Ru(II) complexes containing 4-t-butyl-2,6-di-1',8'-(naphthyrid-2'-yl)-pyridine (and its bisbenzo-derivative), an equatorial water, and two axial 4-picolines follow the thermodynamically more favorable "direct pathway" via [Ru(IV)═O](2+), which avoids the higher oxidation state [Ru(V)═O](3+) in neutral and basic media. Our experimental and theoretical results that focus on the pH-dependent onset catalytic potentials indicative of a PCET driven low-energy pathway for the formation of products with an O-O bond (such as [Ru(III)-OOH](2+) and [Ru(IV)-OO](2+)) at an applied potential below the Ru(V)═O/Ru(IV)═O couple clearly support such a mechanism.
View Article and Find Full Text PDFPhotochemical water splitting is a promising avenue to sustainable, clean energy and fuel production. Gallium nitride (GaN) and its solid solutions are excellent photocatalytic materials; however, the efficiency of the process is low on pure GaN, and cocatalysts are required to increase the yields. We present the first time-domain theoretical study of the initial steps of photocatalytic water splitting on a GaN surface.
View Article and Find Full Text PDF