Publications by authors named "James Moseley"

Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In the fission yeast , the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1.

View Article and Find Full Text PDF

Pattern-forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips.

View Article and Find Full Text PDF

Eukaryotic cells tightly control their size, but the relevant aspect of size is unknown in most cases. Fission yeast divide at a threshold cell surface area (SA) due, in part, to the protein kinase Cdr2. We find that fission yeast cells only divide by SA under a size threshold.

View Article and Find Full Text PDF

Pattern forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips.

View Article and Find Full Text PDF

Many cell cycle regulatory proteins catalyze cell cycle progression in a concentration-dependent manner. In the fission yeast Schizosaccharomyces pombe, the protein kinase Cdr2 promotes mitotic entry by organizing cortical oligomeric nodes that lead to inhibition of Wee1, which itself inhibits the cyclin-dependent kinase Cdk1. cdr2Δ cells lack nodes and divide at increased size due to overactive Wee1, but it has not been known how increased Cdr2 levels might impact Wee1 and cell size.

View Article and Find Full Text PDF

Fission yeast cells prevent mitotic entry until a threshold cell surface area is reached. The protein kinase Cdr2 contributes to this size control system by forming multiprotein nodes that inhibit Wee1 at the medial cell cortex. Cdr2 node anchoring at the cell cortex is not fully understood.

View Article and Find Full Text PDF

Polarized morphogenesis is achieved by targeting or inhibiting growth in distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along nongrowing cell sides.

View Article and Find Full Text PDF

Fission yeast cells maintain a rod shape due to conserved signaling pathways that organize the cytoskeleton for polarized growth. We discovered a mechanism linking the conserved protein kinase Pak1 with cell shape through the RNA-binding protein Sts5. Pak1 (also called Shk1 and Orb2) prevents Sts5 association with P bodies by directly phosphorylating its intrinsically disordered region (IDR).

View Article and Find Full Text PDF

Polarized growth and cytokinesis are two fundamental cellular processes that exist in virtually all cell types. Mechanisms for asymmetric distribution of materials allow for cells to grow in a polarized manner. This gives rise to a variety of cell shapes seen throughout all cell types.

View Article and Find Full Text PDF

A hallmark of cell division in eukaryotic cells is the formation and elongation of a microtubule (MT)-based mitotic spindle. Proper positioning of the spindle is critical to ensure equal segregation of the genetic material to the resulting daughter cells. Both the timing of spindle elongation and constriction of the actomyosin contractile ring must be precisely coordinated to prevent missegregation or damage to the genetic material during cellular division.

View Article and Find Full Text PDF

Protein kinases direct polarized growth by regulating the cytoskeleton in time and space and could play similar roles in cell division. We found that the Cdc42-activated polarity kinase Pak1 colocalizes with the assembling contractile actomyosin ring (CAR) and remains at the division site during septation. Mutations in pak1 led to defects in CAR assembly and genetic interactions with cytokinesis mutants.

View Article and Find Full Text PDF

To enter into mitosis, cells must shut off the cell cycle inhibitor Wee1. SAD family protein kinases regulate Wee1 signaling in yeast and humans. In , two SAD kinases (Cdr1/Nim1 and Cdr2) act as upstream inhibitors of Wee1.

View Article and Find Full Text PDF

Fewer than 10% of fungal species have been discovered, and the diversity and ecological roles of marine species are particularly enigmatic. A new study shows that exploration of this untapped fungal biodiversity may expand our understanding of basic cellular functions such as growth, polarization, and division.

View Article and Find Full Text PDF

Animal and fungal cells divide through the assembly, anchoring, and constriction of a contractile actomyosin ring (CAR) during cytokinesis. The timing and position of the CAR must be tightly controlled to prevent defects in cell division, but many of the underlying signaling events remain unknown. The conserved heterotrimeric protein phosphatase PP2A controls the timing of events in mitosis, and upstream pathways including Greatwall-Ensa regulate PP2A activity.

View Article and Find Full Text PDF

Control of cell size requires molecular size sensors that are coupled to the cell cycle. Rod-shaped fission yeast cells divide at a threshold size partly due to Cdr2 kinase, which forms nodes at the medial cell cortex where it inhibits the Cdk1-inhibitor Wee1. Pom1 kinase phosphorylates and inhibits Cdr2, and forms cortical concentration gradients from cell poles.

View Article and Find Full Text PDF
Eisosomes.

Curr Biol

April 2018

Moseley discusses the molecular and mechanical functions of eisosomes - invaginations from the yeast plasma membrane.

View Article and Find Full Text PDF

Cell size control requires mechanisms that link cell growth with Cdk1 activity. In fission yeast, the protein kinase Cdr2 forms cortical nodes that include the Cdk1 inhibitor Wee1 along with the Wee1-inhibitory kinase Cdr1. We investigated how nodes inhibit Wee1 during cell growth.

View Article and Find Full Text PDF

Connections between the protein kinases that function within complex cell polarity networks are poorly understood. Rod-shaped fission yeast cells grow in a highly polarized manner, and genetic screens have identified many protein kinases, including the CaMKK-like Ssp1 and the MARK/PAR-1 family kinase Kin1, that are required for polarized growth and cell shape, but their functional mechanisms and connections have been unknown [1-5]. We found that Ssp1 promotes cell polarity by phosphorylating the activation loop of Kin1.

View Article and Find Full Text PDF

Environmental conditions modulate cell cycle progression in many cell types. A key component of the eukaryotic cell cycle is the protein kinase Wee1, which inhibits the cyclin-dependent kinase Cdk1 in yeast through human cells. In the fission yeast , the protein kinase Cdr1 is a mitotic inducer that promotes mitotic entry by phosphorylating and inhibiting Wee1.

View Article and Find Full Text PDF

The heterotrimeric kinase AMPK acts as an energy sensor to coordinate cell metabolism with environmental status in species from yeast through humans. Low intracellular ATP leads to AMPK activation through phosphorylation of the activation loop within the catalytic subunit. Other environmental stresses also activate AMPK, but it is unclear whether cellular energy status affects AMPK activation under these conditions.

View Article and Find Full Text PDF

AMPK-related protein kinases (ARKs) coordinate cell growth, proliferation, and migration with environmental status. It is unclear how specific ARKs are activated at specific times. In the fission yeast , the CaMKK-like protein kinase Ssp1 promotes cell cycle progression by activating the ARK Cdr2 according to cell growth signals.

View Article and Find Full Text PDF

Unlabelled: Proteins containing polyglutamine (polyQ) regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt) with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington's disease (HD). To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt) in Schizosaccharomyces pombe In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S.

View Article and Find Full Text PDF

Cytoskeletal polymers are organized into a wide variety of higher-order structures in cells. The yeast BAR domain protein Pil1 self-assembles into tubules in vitro, and forms linear polymers at cortical eisosomes in cells. In the fission yeast S.

View Article and Find Full Text PDF

Cell surface area rapidly increases during mechanical and hypoosmotic stresses. Such expansion of the plasma membrane requires 'membrane reservoirs' that provide surface area and buffer membrane tension, but the sources of this membrane remain poorly understood. In principle, the flattening of invaginations and buds within the plasma membrane could provide this additional surface area, as recently shown for caveolae in animal cells.

View Article and Find Full Text PDF