Publications by authors named "James McKellar"

Staphylococcus aureus causes a broad spectrum of diseases in humans and animals. It is frequently associated with inflammatory skin disorders such as atopic dermatitis, where it aggravates symptoms. Treatment of S.

View Article and Find Full Text PDF

Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree.

View Article and Find Full Text PDF

InterPro family IPR020489 comprises ~1000 uncharacterized bacterial proteins. Previously we showed that overexpressing the Escherichia coli representative of this family, EcYejG, conferred low-level resistance to aminoglycoside antibiotics. In an attempt to shed light on the biochemical function of EcYejG, we have solved its structure using multinuclear solution NMR spectroscopy.

View Article and Find Full Text PDF

Nitrate- and nitrite-sensing (NIT) domains are found associated with a wide variety of bacterial receptors, including chemoreceptors. However, the structure of a chemoreceptor-associated NIT domain has not yet been characterized. Recently, a chemoreceptor named PscF was identified from the plant pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF

Chemoreceptors enable bacteria to detect chemical signals in the environment and navigate towards niches that are favourable for survival. The sensor domains of chemoreceptors function as the input modules for chemotaxis systems, and provide sensory specificity by binding specific ligands. Cache-like domains are the most common extracellular sensor module in prokaryotes, however only a handful have been functionally or structurally characterised.

View Article and Find Full Text PDF

Chemoreceptors play a central role in chemotaxis, allowing bacteria to detect chemical gradients and bias their swimming behavior in order to navigate toward favorable environments. The genome of the kiwifruit pathogen, Pseudomonas syringae pv. actinidiae (Psa) strain NZ-V13 encodes 43 predicted chemoreceptors, none of which has been characterized.

View Article and Find Full Text PDF