Publications by authors named "James McKanna"

As transcranial electrical stimulation (tES) protocols advance, assumptions underlying the technique need to be retested to ensure they still hold. Whilst the safety of stimulation has been demonstrated mainly for a small number of sessions, and small sample size, adverse events (AEs) following multiple sessions remain largely untested. Similarly, whilst blinding procedures are typically assumed to be effective, the effect of multiple stimulation sessions on the efficacy of blinding procedures also remains under question.

View Article and Find Full Text PDF

The present study introduces a novel cognitive intervention aimed at improving fluid intelligence (G), based on a framework we refer to as FAST: Flexible, Adaptive, Synergistic Training. FAST leverages a combination of novel game-based executive function (EF) training-designed specifically to enhance the likelihood of transfer-and transcranial electrical stimulation (tES), with aims to synergistically activate and strengthen mechanisms of cognitive control critical to G. To test our intervention, we collected three G measures from 113 participants [the advanced short Bochumer Matrizen-Test (BOMAT), Raven's Advanced Progressive Matrices (APM), and matrices similar to Raven's generated by Sandia labs], prior to and following one of three interventions: (1) the FAST + tRNS intervention, a combination of 30 min of daily training with our novel training game, Robot Factory, and 20 min of concurrent transcranial random noise stimulation applied to bilateral dorsolateral prefrontal cortex (DLPFC); (2) an adaptively difficult Active Control intervention comprised of visuospatial tasks that specifically do not target G; or (3) a no-contact control condition.

View Article and Find Full Text PDF

It is debated whether cognitive training of specific executive functions leads to far transfer effects, such as improvements in fluid intelligence (Gf). Within this context, transcranial direct current stimulation and recently also novel protocols such as transcranial random noise and alternating current stimulation are being investigated with regards to their ability to enhance cognitive training outcomes. We compared the effects of four different transcranial electrical brain stimulation protocols in combination with nine daily computerized training sessions on Gf.

View Article and Find Full Text PDF

Objectives: Herein we describe a methodology for developing a game-based intervention to raise awareness of Chlamydia and other sexually transmitted infections among youth in Boston's underserved communities.

Materials And Methods: We engaged in three design-based experiments. These utilized mixed methods, including playtesting and assessment methods, to examine the overall effectiveness of the game.

View Article and Find Full Text PDF

Assessment of cognitive functionality is an important aspect of care for elders. Unfortunately, few tools exist to measure divided attention, the ability to allocate attention to different aspects of tasks. An accurate determination of divided attention would allow inference of generalized cognitive decline, as well as providing a quantifiable indicator of an important component of driving skill.

View Article and Find Full Text PDF

Modeling cognitive performance using home monitoring data is a new approach to managing neurologic conditions and for monitoring the effects of cognitive exercise interventions. The data consists of activity monitoring from motion sensors and specific cognitive metrics embedded within our adaptive computer games. The frequency and continuity of data collection allows us to analyze within subject trends of cognitive performance and to assess day to day variability.

View Article and Find Full Text PDF

Divided attention is a vital cognitive ability used in important daily activities (e.g., driving), which tends to deteriorate with age.

View Article and Find Full Text PDF

Many countries are faced with a rapidly increasing economic and social challenge of caring for their elderly population. Cognitive issues are at the forefront of the list of concerns. People over the age of 75 are at risk for medically related cognitive decline and confusion, and the early detection of cognitive problems would allow for more effective clinical intervention.

View Article and Find Full Text PDF

Standard cognitive assessments to detect dementia are administered infrequently and often long after symptoms are clear to even family members. With the advent of new drugs and therapies to delay the onset of dementia, it is important to both detect signs as early as possible and to provide monitoring of cognitive changes. This paper describes unobtrusive methods for monitoring user interactions with a computer that serve as a basis for algorithms to measure cognitive performance.

View Article and Find Full Text PDF

In mammalian kidney, dopamine produced in the proximal tubule (PT) acts as an autocrine/paracrine natriuretic hormone that inhibits salt and fluid reabsorption in the PT. In high-salt-treated animals, PT dopamine activity increases and inhibits reabsorption, leading to increased salt and fluid delivery to the macula densa (MD) and subsequent natriuresis and diuresis. Regulated cyclooxygenase-2 (COX-2) in the MD represents another intrinsic system mediating renal salt and water homeostasis.

View Article and Find Full Text PDF

The U.S. has experienced a rapid growth in the use of computers by elders.

View Article and Find Full Text PDF

Mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene have been shown to cause autosomal recessive polycystic kidney disease (ARPKD), but the cellular functions of the gene product (PKHD1) remain uncharacterized. To illuminate its properties, the spatial and temporal expression patterns of PKHD1 were determined in mouse, rat, and human tissues by using polyclonal Abs and mAbs recognizing various specific regions of the gene product. During embryogenesis, PKHD1 is widely expressed in epithelial derivatives, including neural tubules, gut, pulmonary bronchi, and hepatic cells.

View Article and Find Full Text PDF

The antagonism between prostaglandin and vasopressin represents a classic negative feedback loop. It is not clear whether cyclooxygenase (COX)-2 and/or COX-1 expression is involved in elevated prostaglandin production stimulated by vasopressin in vivo. In the present study, we explored vasopressin regulation of medullary COX-2 and COX-1 expression acutely and chronically in rats.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is involved in kidney morphogenesis and is transiently elevated in the immature kidney. In adult rats, renal cortical COX-2 expression is tonically suppressed by mineralocorticoids (MC) and glucocorticoids (GC) and induced by chronic salt restriction. Young rats have low levels of GC and are in a state of relative volume depletion.

View Article and Find Full Text PDF

It is well known that nonselective, nonsteroidal anti-inflammatory drugs inhibit renal renin production. Our previous studies indicated that angiotensin-converting enzyme inhibitor (ACEI)-mediated renin increases were absent in rats treated with a cyclooxygenase (COX)-2-selective inhibitor and in COX-2 -/- mice. The current study examined further whether COX-1 is also involved in mediating ACEI-induced renin production.

View Article and Find Full Text PDF

The renal inner medulla and its distal one-third, the papilla, are major sites of prostanoid synthesis involved in water and electrolyte homeostasis. These sites contain variable levels of cyclooxygenase (COX)-2, a key prostaglandin synthase enzyme that is sensitive to adrenal steroids. Immunoreactive renal medullary COX-2, restricted to interstitial cells in control adult rats, shows a gradient of intense staining at the tip of the papilla that gradually diminishes to undetectable levels in the proximal inner medulla.

View Article and Find Full Text PDF

Background: We previously reported that renal cortical cyclooxygenase (COX-2) expression increased following subtotal nephrectomy, and chronic treatment with a selective COX-2 inhibitor, SC58236, reduced proteinuria and retarded the development of glomerulosclerosis. The present studies were designed to examine the effects of COX-2 inhibition in a model of diabetic nephropathy.

Methods: Rats were divided into three groups: control, diabetic (streptozotocin-induced diabetic animals with superimposed DOCA/salt hypertension; right nephrectomy and DOCA treatment), and treated (administration of the selective COX-2 inhibitor, SC58236, to a subset of diabetic/DOCA/salt rats).

View Article and Find Full Text PDF

Synopsis of recent research by authors named "James McKanna"

  • - James McKanna's recent research primarily focuses on the intersection of cognitive enhancement techniques and brain stimulation methods, particularly investigating the efficacy, safety, and psychological impacts of transcranial electrical stimulation (tES) protocols through various methodologies.
  • - His studies include innovative approaches such as the FAST framework, which combines game-based executive function training with tES, aiming to enhance fluid intelligence (Gf) in participants, while also evaluating the effects of different stimulation protocols on cognitive training outcomes.
  • - McKanna has also explored the broader applications of cognitive monitoring through technology, including game-based interventions for health awareness in underserved communities and unobtrusive monitoring of cognitive abilities in the elderly, emphasizing the need for early detection of cognitive decline.