Bcl-2 is an anti-apoptotic protein that is frequently overexpressed in cancer cells but its role in carcinogenesis is not clear. We are interested in how Bcl-2 expression affects non-cancerous breast cells and its role in the cell cycle. We prepared an MCF10A breast epithelial cell line that stably overexpressed Bcl-2.
View Article and Find Full Text PDFMales of advanced age represent a rapidly growing population at risk for prostate cancer. In the contemporary setting of earlier detection, a majority of prostate carcinomas are still clinically localized and often treated using radiation therapy. Our recent studies have shown that premature cellular senescence, rather than apoptosis, accounts for most of the clonogenic death induced by clinically relevant doses of irradiation in prostate cancer cells.
View Article and Find Full Text PDFBackground: The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors.
Objective: This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells.
Methods: We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular.
Prostate cancer remains a leading cause of death in men despite increased capacity to diagnose at earlier stages. After prostate cancer has become hormone independent, which often occurs after hormonal ablation therapies, it is difficult to effectively treat. Prostate cancer may arise from mutations and dysregulation of various genes involved in regulation signal transduction (e.
View Article and Find Full Text PDFBreast cancer is the most common malignancy among women. It is frequently treated with chemotherapy and hormone therapy. More recently, however, 'targeted therapy' has emerged as an important approach to cancer therapy.
View Article and Find Full Text PDFMol Pharmacol
September 2008
Constitutively activated AKT kinase is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that the novel AKT inhibitor (2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) leads to rapid cell death of T-ALL lines and patient samples. Treatment of CEM, Jurkat, and MOLT-4 cells with nanomolar doses of the inhibitor led to AKT phosphorylation accompanied by dephosphorylation and activation of the downstream target, glycogen synthase kinase-3beta.
View Article and Find Full Text PDFCurr Opin Investig Drugs
June 2008
Mutations occur in some cancer cells and result in elevated expression or constitutive activation of various growth factor receptors. The Raf/MEK/ERK pathway is often activated by mutations in these growth factor receptors. This pathway is regulated by upstream Ras, which is mutated in 20 to 30% of human cancers.
View Article and Find Full Text PDFThe PI3K/PTEN/Akt/mTOR pathway plays critical roles in the regulation of cell growth. The effects of this pathway on drug resistance and cellular senescence of breast cancer cells has been a focus of our laboratory. Introduction of activated Akt or mutant PTEN constructs which lack lipid phosphatase [PTEN(G129E)] or lipid and protein phosphatase [PTEN(C124S)] activity increased the resistance of the cells to the chemotherapeutic drug doxorubicin, and the hormonal drug tamoxifen.
View Article and Find Full Text PDFTelomere attrition, DNA damage and constitutive mitogenic signaling can all trigger cellular senescence in normal cells and serve as a defense against tumor progression. Cancer cells may circumvent this cellular defense by acquiring genetic mutations in checkpoint proteins responsible for regulating permanent cell cycle arrest. A small family of tumor suppressor genes encoding the retinoblastoma susceptibility protein family (Rb, p107, p130) exerts a partially redundant control of entry into S phase of DNA replication and cellular proliferation.
View Article and Find Full Text PDFBreast cancer ranks as the second most common cause of cancer death among women in the United States. Anticancer agents are an important component of breast cancer therapy. Drugs frequently used to treat breast cancer include methotrexate, 5-fluorouracil (5-FU), cyclophosphamide, anthracyclines, taxanes, trastuzumab, tamoxifen and aromatase inhibitors.
View Article and Find Full Text PDFActivation of the PI3K/Akt signaling cascade is often associated with advanced forms of prostatic carcinoma (CaP). This is likely explained by the common loss of the PTEN gene in a majority of CaP patients. Conversely, activation of the Raf/MEK/ERK pathway is seldom linked with prostatic disease.
View Article and Find Full Text PDFA dramatic stage-migration in diagnosis of prostate cancer has led to earlier detection of clinically localized carcinoma and an increased use of radiation therapy. The p53 protein responds to irradiation-induced DNA damage by removing critically damaged cells from the proliferative pool. This review will focus on the dominant role that p53-dependent cellular senescence, rather than cell death, plays in determining the radiosensitivity of human prostate cancer cells in vitro.
View Article and Find Full Text PDFBackground: The sodium/iodide symporter (NIS) is a membrane glycoprotein mediating active iodide uptake in the thyroid gland and is the molecular basis for radioiodide imaging and therapeutic ablation of thyroid carcinomas. NIS is expressed in the lactating mammary gland and in many human breast tumors, raising interest in similar use for diagnosis and treatment. However, few human breast tumors have clinically evident iodide uptake ability.
View Article and Find Full Text PDFAccumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success.
View Article and Find Full Text PDFCells require the ability to appropriately respond to signals in their extracellular environment. To initiate, inhibit and control these processes, the cell has developed a complex network of signaling cascades. The phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways regulate several responses including mitosis, apoptosis, motility, proliferation, differentiation and many others.
View Article and Find Full Text PDFBecause p53 inactivation may limit the effectiveness of radiation therapy for localized prostate cancer, it is important to understand how this gene regulates clonogenic survival after an exposure to ionizing radiation. Here, we show that premature cellular senescence is the principal mode of cell death accounting for the radiosensitivity of human prostate cancer cell lines retaining p53 function. Alternative stress response pathways controlled by this tumor suppressor, including cell cycle arrest, DNA damage repair, mitotic catastrophe and apoptosis, contributed significantly less to radiation-induced clonogenic death.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) is important for normal development, differentiation, and cell proliferation. Deregulation of EGFR has been observed in breast cancer. EGFR and signal pathways activated by these receptors have been associated with an advanced tumor stage and a poor clinical prognosis in breast cancer; however, the precise mechanisms responsible for this process are still not known.
View Article and Find Full Text PDFGrowth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g.
View Article and Find Full Text PDFBCL-2 proteins are critical for cell survival and are overexpressed in many tumors. ABT-737 is a small-molecule BH3 mimetic that exhibits single-agent activity against lymphoma and small-cell lung cancer in preclinical studies. We here report that ABT-737 effectively kills acute myeloid leukemia blast, progenitor, and stem cells without affecting normal hematopoietic cells.
View Article and Find Full Text PDFOxygen radicals have diverse effects on cells. In many cases, exposure to reactive oxygen intermediates (ROI) can induce cell death. Conversely, there is also evidence that suggests oxygen radicals can activate signaling pathways that are thought to prevent cell death.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2007
An abundance of scientific literature exists demonstrating that oxidative stress influences the MAPK signaling pathways. This review summarizes these findings for the ERK, JNK, p38, and BMK1 pathways. For each of these different MAPK signaling pathways, the following is reviewed: the proteins involved in the signaling pathways, how oxidative stress can activate cellular signaling via these pathways, the types of oxidative stress that are known to induce activation of the different pathways, and the specific cell types in which oxidants induce MAPK responses.
View Article and Find Full Text PDF