Publications by authors named "James Manley"

Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing.

View Article and Find Full Text PDF

Myelodysplastic syndromes and other cancers are often associated with mutations in the U2 snRNP protein SF3B1. Common SF3B1 mutations, including K700E, disrupt SF3B1 interaction with the protein SUGP1 and induce aberrant activation of cryptic 3' splice sites (ss), presumably resulting from aberrant U2/branch site (BS) recognition by the mutant spliceosome. Here, we apply the new method of U2 IP-seq to profile BS binding across the transcriptome of K562 leukemia cells carrying the K700E mutation.

View Article and Find Full Text PDF

Glioblastoma (GBM) has a poor prognosis with a high recurrence and low survival rate. Previous RNA-seq analyses have revealed that alternative splicing (AS) plays a role in GBM progression. Here, we present a novel AS analysis method (Semi-Q) and describe its use to identify GBM-specific AS events.

View Article and Find Full Text PDF

Transcripts from the human gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of APA are unclear.

View Article and Find Full Text PDF

The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions.

View Article and Find Full Text PDF

Among the most common genetic alterations in myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, and generally associate with a more favorable prognosis. However, not all SF3B1 mutations are the same, and little is known about how distinct hotspots influence disease.

View Article and Find Full Text PDF

The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1.

View Article and Find Full Text PDF

The spliceosomal gene is frequently mutated in cancer. While it is known that hotspot mutations lead to loss of splicing factor SUGP1 from spliceosomes, the cancer-relevant SF3B1-SUGP1 interaction has not been characterized. To address this issue, we show by structural modeling that two regions flanking the SUGP1 G-patch make numerous contacts with the region of SF3B1 harboring hotspot mutations.

View Article and Find Full Text PDF
Article Synopsis
  • * Unlike typical SF3B1 mutations, the E592K variant creates a different RNA missplicing pattern and still allows normal splicing of certain genes related to sideroblastic anemia.
  • * These findings indicate that patients with the E592K mutation should receive different treatment considerations compared to those with low-risk MDS who have more common mutations that respond well to luspatercept.
View Article and Find Full Text PDF

Certain long non-coding RNAs (lncRNAs) are known to contain small open reading frames that can be translated. Here we describe a much larger 25 kDa human protein, "ibosomal GS ncoded rotein" (RIEP), that remarkably is encoded by the well-characterized RNA polymerase (RNAP) II-transcribed nucleolar "promoter and pre-rRNA antisense" lncRNA (). Strikingly, RIEP, which is conserved throughout primates but not found in other species, predominantly localizes to the nucleolus as well as mitochondria, but both exogenously expressed and endogenous RIEP increase in the nuclear and perinuclear regions upon heat shock (HS).

View Article and Find Full Text PDF

is the most frequently mutated spliceosomal gene in cancer. Several hotspot mutations are known to disrupt the interaction of SF3B1 with another splicing factor, SUGP1, resulting in the RNA missplicing that characterizes mutant SF3B1 cancers. Properties of SUGP1, especially the presence of a G-patch motif, a structure known to function by activating DEAH-box RNA helicases, suggest the requirement of such an enzyme in SUGP1 function in splicing.

View Article and Find Full Text PDF

Nucleoli are the major cellular compartments for the synthesis of rRNA and assembly of ribosomes, the macromolecular complexes responsible for protein synthesis. Given the abundance of ribosomes, there is a huge demand for rRNA, which indeed constitutes ∼80% of the mass of RNA in the cell. Thus, nucleoli are characterized by extensive transcription of multiple rDNA loci by the dedicated polymerase, RNA polymerase (Pol) I.

View Article and Find Full Text PDF

Background: Cash transfer (CT) programs are an important type of social protection meant to reduce poverty. Whether CT programs increase the risk of overweight and obesity is unclear. The objective was to characterize the relationship between CT programs and the risk of overweight and obesity in children and adults.

View Article and Find Full Text PDF

Fused in Sarcoma (FUS) is a nuclear RNA/DNA binding protein that mislocalizes to the cytoplasm in the neurodegenerative diseases ALS and FTD. Despite the existence of FUS pathogenic mutations that result in nuclear import defects, a subset of ALS/FTD patients display cytoplasmic accumulation of wild-type FUS, although the underlying mechanism is unclear. Here we confirm that transcriptional inhibition, specifically of RNA polymerase II (RNAP II), induces FUS cytoplasmic translocation, but we show that several other stresses do not.

View Article and Find Full Text PDF

Background: Cash transfer (CT) programmes are an increasingly common approach to alleviate poverty and inequality and improving child health and nutrition, as well as supporting other goals such as education. Evidence indicates that CTs can be effective, but overall impacts are small in magnitude. This paper substantially updates the evidence base on the effectiveness of CTs and moderating factors.

View Article and Find Full Text PDF

SF3B1 is the most frequently mutated RNA splicing factor in cancer, including in ∼25% of myelodysplastic syndromes (MDS) patients. SF3B1-mutated MDS, which is strongly associated with ringed sideroblast morphology, is characterized by ineffective erythropoiesis, leading to severe, often fatal anemia. However, functional evidence linking mutations to the anemia described in MDS patients harboring this genetic aberration is weak, and the underlying mechanism is completely unknown.

View Article and Find Full Text PDF

The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of YSPTSPS heptapeptide repeats, and the phosphorylation status of the repeats controls multiple transcriptional steps and co-transcriptional events. However, how CTD phosphorylation status responds to distinct environmental stresses is not fully understood. In this study, we found that a drastic reduction in phosphorylation of a subset of Ser2 residues occurs rapidly but transiently following exposure to HO.

View Article and Find Full Text PDF

The nucleolus is an important cellular compartment in which ribosomal RNAs (rRNAs) are transcribed and where certain stress pathways that are crucial for cell growth are coordinated. Here we report novel functions of the DNA replication and repair factor replication protein A (RPA) in control of nucleolar homeostasis. We show that loss of the DNA:RNA helicase senataxin (SETX) promotes RPA nucleolar localization, and that this relocalization is dependent on the presence of R loops.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a deadly neuromuscular disorder caused by progressive motor neuron loss in the brain and spinal cord. Over the past decades, a number of genetic mutations have been identified that cause or are associated with ALS disease progression. Numerous genes harbor ALS mutations, and they encode proteins displaying a wide range of physiological functions, with limited overlap.

View Article and Find Full Text PDF

We study the spread of COVID-19 infections and deaths by county poverty level in the US. In the beginning of the pandemic, counties with either very low poverty levels or very high poverty levels reported the highest numbers of cases. A U-shaped relationship prevails for counties with high population density while among counties with low population density, only poorer counties report high incidence rates of COVID-19.

View Article and Find Full Text PDF

Background: Cash transfer (CT) programmes are implemented widely to alleviate poverty and provide safety nets to vulnerable households with children. However, evidence on the effects of CTs on child health and nutrition outcomes has been mixed. We systematically reviewed evidence of the impact of CTs on child nutritional status and selected proximate determinants.

View Article and Find Full Text PDF

The GGGGCC hexanucleotide expansion in (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), yet a clear understanding of how C9 fits into the broader context of ALS/FTD pathology has remained lacking. The repetitive RNA derived from the C9 repeat is known to sequester hnRNPH, a splicing regulator, into insoluble aggregates, resulting in aberrant alternative splicing. Furthermore, hnRNPH insolubility and altered splicing of a robust set of targets have been observed to correlate in C9 and sporadic ALS/FTD patients alike, suggesting that changes along this axis are a core feature of disease pathogenesis.

View Article and Find Full Text PDF

SETX (senataxin) is an RNA/DNA helicase that has been implicated in transcriptional regulation and the DNA damage response through resolution of R-loop structures. Mutations in result in either of two distinct neurodegenerative disorders. dominant mutations result in a juvenile form of amyotrophic lateral sclerosis (ALS) called ALS4, whereas recessive mutations are responsible for ataxia called ataxia with oculomotor apraxia type 2 (AOA2).

View Article and Find Full Text PDF

Most eukaryotic genes produce alternative polyadenylation (APA) isoforms. Here we report that, unlike previously characterized cell lineages, differentiation of syncytiotrophoblast (SCT), a cell type critical for hormone production and secretion during pregnancy, elicits widespread transcript shortening through APA in 3'UTRs and in introns. This global APA change is observed in multiple in vitro trophoblast differentiation models, and in single cells from placentas at different stages of pregnancy.

View Article and Find Full Text PDF

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma characterized by translocation and deregulation of the proto-oncogene c-MYC. Transcription factor 3 (TCF3) has also been shown to be involved in BL pathogenesis. In BL, TCF3 is constitutively active, and/or expression of its transcriptional targets are altered as a result of BL-associated mutations.

View Article and Find Full Text PDF