J Funct Morphol Kinesiol
September 2024
Background/objectives: Becoming an elite canoe slalom athlete requires thousands of hours of training, spread over many years. It is difficult to assess the correct balance between flatwater and whitewater training because differences in the paddle forces on these terrains are not known. The aim of this study was to describe paddle forces during canoe slalom training on flatwater and whitewater courses for the C1 canoe category.
View Article and Find Full Text PDFCanoe slalom is an Olympic discipline where athletes race down a whitewater course in kayaks (K1) or canoes (C1) navigating a set of down-stream and up-stream gates. Kayak paddles are symmetrical and have a blade at each end, whereas C1 paddles have only one blade that must be moved across the boat to perform strokes on either the right or left side. Asymmetries in paddle force between the two sides of the boat may lead to a reduction in predicted race time.
View Article and Find Full Text PDFBoth the Hill and the Huxley muscle models had already been described by the time the International Society of Biomechanics was founded 50 years ago, but had seen little use before the 1970s due to the lack of computing. As computers and computational methods became available in the 1970s, the field of musculoskeletal modeling developed and Hill type muscle models were adopted by biomechanists due to their relative computational simplicity as compared to Huxley type muscle models. Muscle forces computed by Hill type muscle models provide good agreement in conditions similar to the initial studies, i.
View Article and Find Full Text PDFMale C1 canoe slalom athletes traditionally used cross transitions to move their paddle to the other side of the boat and off-side strokes to paddle on their non-dominant side. Conversely, female athletes often use a switching transition and on-side strokes on their non-dominant side. The purpose of this study was to use a computer model to assess the relation between cross- or switching techniques, and the relative strength (symmetry) of non-dominant compared to dominant side strokes to race times in C1 canoe slalom.
View Article and Find Full Text PDFBackground: Retraining stepping reactions in people post-stroke is vital. However, the relationship between the stimulus and resulting stepping performance in people post-stroke is unknown. We explored relationships between stepping stimulus and stepping reactions initiated by either paretic or non-paretic legs of people post-stroke and controls.
View Article and Find Full Text PDFCerebral palsy results from an upper motor neuron lesion and significantly affects skeletal muscle stiffness. The increased stiffness that occurs is partly a result of changes in the microstructural components of muscle. In particular, alterations in extracellular matrix, sarcomere length, fibre diameter, and fat content have been reported; however, experimental studies have shown wide variability in the degree of alteration.
View Article and Find Full Text PDFJ R Soc Interface
September 2021
While skeletal muscle mass has been shown to decrease mass-specific mechanical work per cycle, it is not yet known how muscle mass alters contraction efficiency. In this study, we examined the effect of muscle mass on mass-specific metabolic cost and efficiency during cyclic contractions in simulated muscles of different sizes. We additionally explored how tendon and its stiffness alters the effects of muscle mass on mass-specific work, mass-specific metabolic cost and efficiency across different muscle sizes.
View Article and Find Full Text PDFThe purpose of this study was to compare the frequency and duration of on-side and off-side strokes and stroke transitions between male and female canoe slalom athletes during international competitions. We analysed 33 International Canoe Federation World Cup, World Championship and European Canoe Association Championship canoe slalom race videos, from 2018 to 2020, frame-by-frame. We recorded drive durations and transition durations for each race run.
View Article and Find Full Text PDFIntroduction: Balance confidence and perception of task challenge is an important construct to measure in rehabilitation of people with lower-limb amputation (LLA). Measurement of electrodermal activity (EDA) captures physiological arousal responses reflecting an individual's perceived challenge in a task. This study explores the feasibility of the use of EDA during outdoor walking tasks to capture task-specific physiological arousal changes associated with perception of challenge in people with amputation.
View Article and Find Full Text PDFMed Sci Sports Exerc
November 2021
Purpose: Producing a steady cadence and power while cycling results in fairly consistent average pedal forces for every revolution, although small fluctuations about an average force do occur. This force can be generated by several combinations of muscles, each with slight fluctuations in excitation for every pedal cycle. Fluctuations such as these are commonly thought of as random variation about average values.
View Article and Find Full Text PDFDuring muscle contraction, chemical energy is converted to mechanical energy when ATP is hydrolysed during cross-bridge cycling. This mechanical energy is then distributed and stored in the tissue as the muscle deforms or is used to perform external work. We previously showed how energy is distributed through contracting muscle during fixed-end contractions; however, it is not clear how the distribution of tissue energy is altered by the kinetic energy of muscle mass during dynamic contractions.
View Article and Find Full Text PDFSkeletal muscle tissue has a highly complex and heterogeneous structure comprising several physical length scales. In the simplest model of muscle tissue, it can be represented as a one dimensional nonlinear spring in the direction of muscle fibres. However, at the finest level, muscle tissue includes a complex network of collagen fibres, actin and myosin proteins, and other cellular materials.
View Article and Find Full Text PDFObjective: Successful stepping reactions, led by either the paretic or nonparetic leg, in response to a loss of balance are critical to safe mobility poststroke. The purpose of this study was to measure sagittal plane hip, knee, ankle, and trunk kinematics during 2-step stepping reactions initiated by paretic and nonparetic legs of people who had stroke and members of a control group.
Methods: Principal component analysis (PCA) was used to reduce the data into movement patterns explaining interlimb coordination of the stepping and stance legs.
Research has shown that compression of muscle can lead to a change in muscle force. Most studies show compression to lead to a reduction in muscle force, although recent research has shown that increases are also possible. Based on methodological differences in the loading design between studies, it seems that muscle length and the direction of transverse loading influence the effect of muscle compression on force production.
View Article and Find Full Text PDFThe nervous system is faced with numerous strategies for recruiting a large number of motor units within and among muscle synergists to produce and control body movement. This is challenging, considering multiple combinations of motor unit recruitment may result in the same movement. Yet vertebrates are capable of performing a wide range of movement tasks with different mechanical demands.
View Article and Find Full Text PDFAlthough cycling is a seemingly simple, reciprocal task, muscles must adapt their function to satisfy changes in mechanical demands induced by higher crank torques and faster pedalling cadences. We examined whether muscle function was sensitive to these changes in mechanical demands across a wide range of pedalling conditions. We collected experimental data of cycling where crank torque and pedalling cadence were independently varied from 13 to 44 N m and 60 to 140 rpm.
View Article and Find Full Text PDFIn this study we examined how the strain energies within a muscle are related to changes in longitudinal force when the muscle is exposed to an external transverse load. We implemented a three-dimensional (3D) finite element model of contracting muscle using the principle of minimum total energy and allowing the redistribution of energy through different strain energy-densities. This allowed us to determine the importance of the strain energy-densities to the transverse forces developed by the muscle.
View Article and Find Full Text PDFDuring contraction the energy of muscle tissue increases due to energy from the hydrolysis of ATP. This energy is distributed across the tissue as strain-energy potentials in the contractile elements, strain-energy potential from the 3D deformation of the base-material tissue (containing cellular and extracellular matrix effects), energy related to changes in the muscle's nearly incompressible volume and external work done at the muscle surface. Thus, energy is redistributed through the muscle's tissue as it contracts, with only a component of this energy being used to do mechanical work and develop forces in the muscle's longitudinal direction.
View Article and Find Full Text PDFMost of what we know about whole muscle behaviour comes from experiments on single fibres or small muscles that are scaled up in size without considering the effects of the additional muscle mass. Previous modelling studies have shown that tissue inertia acts to slow the rate of force development and maximum velocity of muscle during shortening contractions and decreases the work and power per cycle during cyclic contractions; however, these results have not yet been confirmed by experiments on living tissue. Therefore, in this study we conducted work-loop experiments on rat plantaris muscle to determine the effects of increasing the mass of muscle on mechanical work during cyclic contractions.
View Article and Find Full Text PDFSloths exhibit below branch locomotion whereby their limbs are loaded in tension to support the body weight. Suspensory behaviors require both strength and fatigue resistance from the limb flexors; however, skeletal muscle mass of sloths is reduced compared with other arboreal mammals. Although suspensory locomotion demands that muscles are active to counteract the pull of gravity, it is possible that sloths minimize muscle activation and/or selectively recruit slow motor units to maintain support, thus indicating neuromuscular specializations to conserve energy.
View Article and Find Full Text PDFBackground: Individuals with incomplete spinal cord injury often have decreased gait function and coactivation of antagonistic muscle pairs. Common ways of quantifying coactivation using electromyographic signals do not consider frequency information in the signal. As electromyographic signals from different motor unit types have different frequency components and muscle fiber type can change in individuals with spinal cord injury, it may be beneficial to consider frequency components.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2020
Purpose: A key determinant of muscle coordination and maximum power output during cycling is pedaling cadence. During cycling, the neuromuscular system may select from numerous solutions that solve the task demands while producing the same result. For more challenging tasks, fewer solutions will be available.
View Article and Find Full Text PDFThe mechanical output of a muscle may be characterised by having distinct functional behaviours, which can shift to satisfy the varying demands of movement, and may vary relative to a proximo-distal gradient in the muscle-tendon architecture (MTU) among lower-limb muscles in humans and other terrestrial vertebrates. We adapted a previous joint-level approach to develop a muscle-specific index-based approach to characterise the functional behaviours of human lower-limb muscles during movement tasks. Using muscle mechanical power and work outputs derived from experimental data and computational simulations of human walking and running, our index-based approach differentiated known distinct functional behaviours with varying mechanical demands, such as greater spring-like function during running compared with walking; with anatomical location, such as greater motor-like function in proximal compared with the distal lower-limb muscles; and with MTU architecture, such as greater strut-like muscles fibre function compared with the MTU in the ankle plantarflexors.
View Article and Find Full Text PDF