Light-environment signals, sensed by plant phytochrome photoreceptors, are transduced to target genes through direct regulation of PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor abundance and activity. Previous genome-wide DNA-binding and expression analysis has identified a set of genes that are direct targets of PIF transcriptional regulation. However, quantitative analysis of promoter occupancy versus expression level has suggested that unknown "trans factors" modulate the intrinsic transcriptional activation activity of DNA-bound PIF proteins.
View Article and Find Full Text PDFPlastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression.
View Article and Find Full Text PDFA subfamily of four Phytochrome (phy)-Interacting bHLH transcription Factors (PIFs) collectively promote skotomorphogenic development in dark-grown seedlings. This activity is reversed upon exposure to light, by photoactivated phy molecules that induce degradation of the PIFs, thereby triggering the transcriptional changes that drive a transition to photomorphogenesis. The PIFs function both redundantly and partially differentially at the morphogenic level in this process.
View Article and Find Full Text PDFAfter light-induced nuclear translocation, phytochrome photoreceptors interact with and induce rapid phosphorylation and degradation of basic helix-loop-helix transcription factors, such as PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), to regulate gene expression. Concomitantly, this interaction triggers feedback reduction of phytochrome B (phyB) levels. Light-induced phosphorylation of PIF3 is necessary for the degradation of both proteins.
View Article and Find Full Text PDFDark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4, and 5) are critically necessary to maintaining this developmental state and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using integrated ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, exerted by sequence-specific binding to G-box (CACGTG) or PBE-box (CACATG) motifs in the target promoters genome-wide.
View Article and Find Full Text PDFPlants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-responsive transcriptome profiles of wild-type and quadruple pif (pifq) mutants. We identify a subset of genes, enriched in transcription factor-encoding loci, that respond rapidly to shade, in a PIF-dependent manner, and contain promoter G-box motifs, known to bind PIFs.
View Article and Find Full Text PDFThe phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of the PIFs. Here, we combined a microarray-based approach with a functional profiling strategy and identified four PIF3-regulated genes misexpressed in the dark (MIDAs) that are novel regulators of seedling deetiolation.
View Article and Find Full Text PDFLight signals perceived by the phytochromes induce the transition from skotomorphogenic to photomorphogenic development (deetiolation) in dark-germinated seedlings. Evidence that a quadruple mutant (pifq) lacking four phytochrome-interacting bHLH transcription factors (PIF1, 3, 4, and 5) is constitutively photomorphogenic in darkness establishes that these factors sustain the skotomorphogenic state. Moreover, photoactivated phytochromes bind to and induce rapid degradation of the PIFs, indicating that the photoreceptor reverses their constitutive activity upon light exposure, initiating photomorphogenesis.
View Article and Find Full Text PDFContrary to expectations based on the visible phenotypic behavior of seedlings undergoing de-etiolation in response to continuous red light (Rc), previous gene expression profiling showed that one or more of the five-membered phytochrome (phy) family of Arabidopsis, other than phyB, is predominantly responsible for transducing the Rc signals to light-responsive genes. To begin to identify which phys are involved, and to define potential primary targets of phy signaling, we have examined the genome-wide expression profiles of genes responding to Rc within 1 h (early response genes) of initial exposure of dark-grown wild-type, phyA, phyB and phyAphyB double mutant seedlings to the light signal. The data show that phyA has a quantitatively dominant role in Rc-induced expression of these early response genes, that phyB has minimal detectable regulatory activity in the presence of phyA, but assumes a quantitatively larger role in its absence, and that phyA and phyB combined are responsible for the full extent of Rc responsiveness of 96% of these genes.
View Article and Find Full Text PDFOne of the key developmental processes during photomorphogenesis is the differentiation of prolamellar bodies of proplastids into thylakoid membranes containing the photosynthetic pigment-protein complexes of chloroplasts. To study the regulatory events controlling pigment-protein complex assembly, including the biosynthesis of metabolic precursors and pigment end products, etiolated Arabidopsis thaliana seedlings were irradiated with continuous red light (Rc), which led to rapid greening, or continuous far-red light (FRc), which did not result in visible greening, and subjected to analysis by oligonucleotide microarrays and targeted metabolite profiling. An analysis using BioPathAt, a bioinformatic tool that allows the visualization of post-genomic data sets directly on biochemical pathway maps, indicated that in Rc-treated seedlings mRNA expression and metabolite patterns were tightly correlated (e.
View Article and Find Full Text PDFThe phytochrome (phy) family of sensory photoreceptors transduce informational light signals to selected nuclear genes, inducing plant growth and developmental responses appropriate to the environment. Existing data suggest that one signaling pathway by which this occurs involves direct, intranuclear interaction of the photoactivated phy molecule with PIF3, a basic helix-loop-helix transcription factor. Here, we provide evidence from recently identified pif3 mutant alleles that PIF3 is necessary for early chloroplast greening and rapid phy-induced expression of nuclear genes encoding chloroplast components upon first exposure of seedlings to light.
View Article and Find Full Text PDFDifferent Arabidopsis phytochrome (phy) family members (phyA through phyE) display differential photosensory and/or physiological functions in regulating growth and developmental responses to light signals. To identify the genes regulated by phyB in response to continuous monochromatic red light (Rc) during the induction of seedling de-etiolation, we have performed time-course, microarray-based expression profiling of wild type (WT) and phyB null mutants. Comparison of the observed expression patterns with those induced by continuous monochromatic far-red light (FRc; perceived exclusively by phyA) in WT and phyA null-mutant seedlings suggests early convergence of the FRc and Rc photosensory pathways to control a largely common transcriptional network.
View Article and Find Full Text PDFRegulatable transgene systems providing easily controlled, conditional induction or repression of expression are indispensable tools in biomedical and agricultural research and biotechnology. Several such systems have been developed for eukaryotes. Most of these rely on the administration of either exogenous chemicals or heat shock.
View Article and Find Full Text PDF