Publications by authors named "James M Sabatier"

Finite element methods are utilized to model and compare the use of both a remote loudspeaker and a vertical shaker in the generation of sound and shear and interface waves in an elastic solid containing an imbedded elastic scatterer, which is resonant. Results for steady state and transient insonification are presented to illustrate excitation, propagation, and scattering mechanisms and effects. Comparisons of acoustic and vibratory excitation of the solid interface are made, with a view towards remote sensing of induced vibratory motion through optical measurement of the ground interface motion above the imbedded inclusion.

View Article and Find Full Text PDF

Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics.

View Article and Find Full Text PDF

An approach has been developed for extracting human gait parameters from micro Doppler sonar grams. Key parameters include average speed of walking, torso velocity, walk cycle time, and peak leg velocity. The approach is a modification of a technique previously used in radar data analysis.

View Article and Find Full Text PDF

Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets.

View Article and Find Full Text PDF

In physical terms, periodic movements of a human body resulting from walking produce a pulse sequence with repetition time T(1) (instant cadence frequency, 1/T(1)) and duration time T(2). Footstep forces generate periodic T(1) broadband seismic and sound signals due to the dynamic forces between the foot and the ground/floor with duration time T(2), which is equal to the time interval for a single footstep from heel strike to toe slap and weight transfer. In a human gait study (for normal speeds of walking), T(1) was detected as 0.

View Article and Find Full Text PDF

The focus of this paper is to experimentally extract the Doppler signatures of a walking human's individual body segments using an ultrasonic Doppler system (UDS) operating at 40 kHz. In a human's walk, the major contribution to Doppler velocities and acoustic scattering is from the foot, lower leg, thigh (upper leg) and torso. The Doppler signature of these human body segments are extracted experimentally.

View Article and Find Full Text PDF

Observed human-gait features in Doppler sonar grams are explained by using the Boulic-Thalmann (BT) model to predict joint angle time histories and the temporal displacements of the body center of mass. Body segments are represented as ellipsoids. Temporally dependent velocities at the proximal and distal end of key body segments are determined from BT.

View Article and Find Full Text PDF

Human footsteps generate periodic broadband frequency envelopes of sound due to dynamic friction forces. Also, human body motion when walking is a cyclic temporal process. The individual body parts have different acoustic cross sections and velocities that form unique human Doppler signatures.

View Article and Find Full Text PDF

Human footsteps generate broadband frequency vibrations in the ground/floor and sound in the air from a few Hertz up to ultrasonic frequencies due to striking and sliding contacts between a foot and the ground/floor. The high-frequency (above 1 kHz) vibrations from footsteps were detected on a building floor, but were not detected on the outdoor ground, even at 1 m from a walker. This paper presents results of ultrasound registration from footsteps on the ground at greater distances.

View Article and Find Full Text PDF

Modal behavior in landmines has recently become a topic of interest for acoustic landmine detection. It is well known that landmines exhibit mechanical resonance behavior that enhances the soil velocity over a buried landmine. Recent experimental work by Zagrai et al.

View Article and Find Full Text PDF

The acoustic signature of a footstep is one of several signatures that can be exploited for human recognition. Early research showed the maximum value for the force of multiple footsteps to be in the frequency band of 1-4 Hz. This paper reports on the broadband frequency-dependent vibrations and sound pressure responses of human footsteps in buildings.

View Article and Find Full Text PDF

Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes.

View Article and Find Full Text PDF

An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion.

View Article and Find Full Text PDF