Our previous study suggested that inhibition of Phosphodiesterase 2 ameliorates memory loss upon exposure to oxidative stress. While whether memory enhancing effects of PDE2 inhibition on Alzheimer's disease mouse model are involved in antioxidant defense and neuronal remodeling, are largely unexplored. The present study addressed whether and how PDE2 inhibitor Bay 60-7550 rescued Aβ oligomers (Aβo)-induced neuronal damage and memory impairment.
View Article and Find Full Text PDFBackground: N6-methyladenosine (mA) modification of RNA influences fundamental aspects of RNA metabolism and mA dysregulation is implicated in various human diseases. In this study, we explored the potential role of RNA mA modification in the pathogenesis of Alzheimer disease (AD).
Methods: We investigated the mA modification and the expression of mA regulators in the brain tissues of AD patients and determined the impact and underlying mechanism of manipulated expression of mA levels on AD-related deficits both in vitro and in vivo.
A global, quantitative proteomics/systems-biology analysis of the selective pharmacological inhibition of phosphodiesterase-4D (PDE4D) revealed the differential regulation of pathways associated with neuroplasticity in memory-associated brain regions. Subtype selective inhibitors of PDE4D bind in an allosteric site that differs between mice and humans in a single amino acid (tyrosine vs. phenylalanine, respectively).
View Article and Find Full Text PDFThe 2018-2019 Research and Graduate Affairs Committee (RGAC) was charged with critically evaluating the leadership development support necessary for pharmacy researchers, including postdoctoral trainees, to develop the skills needed to build and sustain successful research programs and analyzing how well those needs are being met by existing programs both within AACP and at other organizations. The RGAC identified a set of skills that could reasonably be expected to provide the necessary foundation to successfully lead a research team and mapped these skills to the six domains of graduate education in the pharmaceutical sciences established by the 2016-2017 RGAC (Table 1). In addition, the RGAC identified competency in team science and the bench-to-bedside-to-beyond translational spectrum as being critical elements of research leadership.
View Article and Find Full Text PDFRecent imaging studies of amyloid and tau in cognitively normal elderly subjects imply that Alzheimer's pathology can be tolerated by the brain to some extent due to compensatory mechanisms operating at the cellular and synaptic levels. The present study investigated the effects of an allosteric inhibitor of phosphodiesterase-4D (PDE4D), known as BPN14770 (2-(4-((2-(3-Chlorophenyl)-6-(trifluoromethyl)pyridin-4-yl)methyl)phenyl)acetic Acid), on impairment of memory, dendritic structure, and synaptic proteins induced by bilateral microinjection of oligomeric amyloid beta (A into the hippocampus of humanized PDE4D (hPDE4D) mice. The hPDE4D mice provide a unique and powerful genetic tool for assessing PDE4D target engagement.
View Article and Find Full Text PDFSingle-housed stress elicits a range of social isolation-related behavioral and neurobiological abnormalities. To investigate single housing-induced behavioral changes and sex differences on stress outcomes, we examined single-housed stress-induced learning and memory impairment, depression-like behaviors, neuroplasticity abnormalities and underlying mechanism. The results showed that male and female mice socially isolated for 8 weeks had significantly decreased memory acquisition, as demonstrated in the learning curve of the Morris water maze task.
View Article and Find Full Text PDFResveratrol is a natural non-flavonoid polyphenol found in red wine, which has numerous pharmacological properties including anti-stress and antidepressant-like abilities. However, whether the antidepressant- and anxiolytic-like effects of resveratrol are related to the inhibition of phosphodiesterase 4 (PDE4) and its subtypes remains unknown. The same holds true for the subsequent cAMP-dependent pathway.
View Article and Find Full Text PDFNovel pyridine- and pyrimidine-based allosteric inhibitors are reported that achieve PDE4D subtype selectivity through recognition of a single amino acid difference on a key regulatory domain, known as UCR2, that opens and closes over the catalytic site for cAMP hydrolysis. The design and optimization of lead compounds was based on iterative analysis of X-ray crystal structures combined with metabolite identification. Selectivity for the activated, dimeric form of PDE4D provided potent memory enhancing effects in a mouse model of novel object recognition with improved tolerability and reduced vascular toxicity over earlier PDE4 inhibitors that lack subtype selectivity.
View Article and Find Full Text PDFBackground: Phosphodiesterase-2 (PDE2) is a cyclic nucleotide phosphodiesterase and is highly expressed in the amygdala, which suggests its important role in anxiety-like behavior.
Aims: The present study examined whether reduced PDE2A expression in the central nucleus of the amygdala (CeA) produces anxiolytic-like effects in mice.
Methods: PDE2A knockdown in amygdaloid (AR5) cells or the CeA was established using a lentiviral vector-based siRNA system.
The 2017-2018 Research and Graduate Affairs Committee (RGAC) was given three charges aimed at helping academic pharmacy address barriers that must be overcome by both students and schools to attract, retain, and support the development of a diverse, well-rounded, and successful graduate student population. These charges were (1) identifying teaching methodologies, tools and opportunities that graduate programs can introduce into curriculum to overcome barriers to success of today's and tomorrow's learners; (2) developing a strategy for achieving member support of the 2016-2017 recommended graduate competencies by identifying gaps in and existing examples of courses or opportunities that achieve competency-based pharmacy graduate education; and (3) identifying potential strategies to address identified barriers to pursuing graduate education, especially among under-represented student populations. This report describes attitudes toward and opportunities related to competency-based education in graduation education in colleges and schools of pharmacy, identifies types of tools schools could use to enhance training towards the competency framework developed by the 2016-2017 RGAC, particularly with regards to the so-called power skills, and outlines a role for AACP in facilitating this training.
View Article and Find Full Text PDFPhosphodiesterase 2 (PDE2) plays an important role in treatment of stress-related depression through regulation of antioxidant defense and neuroprotective mechanisms. However, the causal relationship between PDE2 and the prevalence of depression and anxiety upon exposure to oxidative stress has not been investigated. The present study examined whether the effects of PDE2 inhibition on oxidative stress were directly involved in reduced ROS by regulating NADPH subunits gp91phox oxidase.
View Article and Find Full Text PDFInhibitors of phosphodiesterase-4 (PDE4) have beneficial effects on memory in preclinical and clinical studies. Development of these drugs has stalled due to dose-limiting side effects of nausea and emesis. While use of subtype-selective inhibitors (i.
View Article and Find Full Text PDFPsychopharmacology (Berl)
August 2018
Rationale: Alcohol use disorder (AUD) is a chronically relapsing condition, which affects nearly 11% of population worldwide. Currently, there are only three FDA-approved medications for treatment of AUD, and normally, satisfactory effects are hard to be achieved. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling has been implicated in regulation of ethanol intake.
View Article and Find Full Text PDFGraduate education in the pharmaceutical sciences is a cornerstone of research within pharmacy schools. Pharmaceutical scientists are critical contributors to addressing the challenges of new drug discovery, delivery, and optimal care in order to ensure improved therapeutic outcomes in populations of patients. The American Association of Colleges of Pharmacy (AACP) charged the 2016-2017 Research and Graduate Affairs Committee (RGAC) to define the competencies necessary for graduate education in the pharmaceutical sciences (Charge 1), recommend collaborative curricular development across schools of pharmacy (Charge 2), recommend AACP programing for graduate education (Charge 3), and provide guidance on emerging areas for innovation in graduate education (Charge 4).
View Article and Find Full Text PDFCyclic nucleotide PDEs are a super-family of enzymes responsible for regulating intracellular levels of the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Through their catalysis, PDEs are able to exert tight regulation over these important intracellular signaling cascades. Previously, PDEs have been implicated in learning and memory, as well as in mood disorders, such as anxiety and depression.
View Article and Find Full Text PDFUsing a genetic mouse model that faithfully recapitulates a genetic alteration strongly associated with schizophrenia and other psychiatric disorders, we examined the impact of this mutation within the prefrontal cortex. Although cortical layering, cytoarchitecture, and proteome were found to be largely unaffected, electrophysiological examination of the mPFC revealed both neuronal hyperexcitability and alterations in short-term synaptic plasticity consistent with enhanced neurotransmitter release. Increased excitability of layer II/III pyramidal neurons was accompanied by consistent reductions in voltage-activated potassium currents near the action potential threshold as well as by enhanced recruitment of inputs arising from superficial layers to layer V.
View Article and Find Full Text PDFInhibition of cyclic AMP (cAMP)-specific phosphodiesterase 4 (PDE4) has been proposed as a potential treatment for a series of neuropsychological conditions such as depression, anxiety and memory loss. However, the specific involvement of each of the PDE4 subtypes (PDE4A, 4B and 4C) in different categories of behavior has yet to be elucidated. In the present study, we compared the possible pharmacological effects of PDE4B and PDE4D selective inhibitors, A-33 and D159687, in mediating neurological function in mice.
View Article and Find Full Text PDFResveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis.
View Article and Find Full Text PDFPsychopharmacology (Berl)
February 2016
Rationale And Objectives: Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms.
Methods: To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing.
Phosphodiesterase 4 (PDE4) has four isoforms (PDE4A-D) with at least 25 splice variants. PDE4 subtype nonselective inhibitors produce potent antidepressant-like and cognition-enhancing effects via increased intracellular cyclic AMP (cAMP) signaling in the brain. Our previous data have demonstrated that long-form PDE4Ds appear to be involved in these pharmacological properties of PDE4 inhibitors in the normal animals.
View Article and Find Full Text PDFChronic stress and neuronal vulnerability have recently been recognized as factors contributing to cognitive disorders. One way to modify neuronal vulnerability is through mediation of phosphodiesterase 2 (PDE2), an enzyme that exerts its action on cognitive processes via the control of intracellular second messengers, cGMP and, to a lesser extent, cAMP. This study explored the effects of a PDE2 inhibitor, Bay 60-7550, on stress-induced learning and memory dysfunction in terms of its ramification on behavioral, morphologic, and molecular changes.
View Article and Find Full Text PDFPhosphodiesterase 2 (PDE2) is a ubiquitous enzyme whose major role is to hydrolyze the important second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). In the central nervous system, pharmacological inhibition of PDE2 results in boosted cAMP and/or cGMP signaling, which is responsible for series of changes in protein expression relevant to psychiatric and learning and memory disorders, such as depression, anxiety, and cognition deficits in Alzheimer's disease. In the periphery, inhibition of PDE2 exhibits beneficial effects in the diseased cardiovascular system, the respiratory system, skeletal muscles and Candida albicans-caused systemic infections.
View Article and Find Full Text PDF