Historically, entities with a vested interest in a product that critics have suggested is harmful have consistently used research to back their claims that the product is safe. Prominent examples are: tobacco, lead, bisphenol A, and atrazine. Research literature indicates that about 80-90% of studies with industry affiliation found no harm from the product, while only about 10-20% of studies without industry affiliation found no harm.
View Article and Find Full Text PDFWhile excessive tensile strain can be detrimental to nerve function, strain can be a positive regulator of neuronal outgrowth. We used an in vivo rat model of sciatic nerve strain to investigate signaling mechanisms underlying peripheral nerve response to deformation. Nerves were deformed by 11% and did not demonstrate deficits in compound action potential latency or amplitude during or after 6 h of strain.
View Article and Find Full Text PDFFront Cell Neurosci
September 2015
Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP) in cultured primary rat Schwann cells.
View Article and Find Full Text PDFCell Mol Life Sci
November 2015
Local and long-distance transport of cytoskeletal proteins is vital to neuronal maintenance and growth. Though recent progress has provided insight into the movement of microtubules and neurofilaments, mechanisms underlying the movement of actin remain elusive, in large part due to rapid transitions between its filament states and its diverse cellular localization and function. In this work, we integrated live imaging of rat sensory neurons, image processing, multiple regression analysis, and mathematical modeling to perform the first quantitative, high-resolution investigation of GFP-actin identity and movement in individual axons.
View Article and Find Full Text PDFAcute osmotic fluctuations in the brain occur during a number of clinical conditions and can result in a variety of adverse neurological symptoms. Osmotic perturbation can cause changes in the volumes of intra- and extracellular fluid and, due to the rigidity of the skull, can alter intracranial pressure thus making it difficult to analyze purely osmotic effects in vivo. The present study aims to determine the effects of changes in osmolarity on SH-SY5Y human neuroblastoma cells in vitro, and the role of the actin-myosin network in regulating this response.
View Article and Find Full Text PDFWhen addressing toxins, one unmistakable parallel exists between biology and politics: developing children and developing nations are those most vulnerable to toxic exposures. This disturbing parallel is the subject of this critical review, which examines the use and distribution of the mercury (Hg)-based compound, thimerosal, in vaccines. Developed in 1927, thimerosal is 49.
View Article and Find Full Text PDFTranslation of mRNA in axons and dendrites enables a rapid supply of proteins to specific sites of localization within the neuron. Distinct mRNA-containing cargoes, including granules and mitochondrial mRNA, are transported within neuronal projections. The distributions of these cargoes appear to change during neuronal development, but details on the dynamics of mRNA transport during these transitions remain to be elucidated.
View Article and Find Full Text PDFIntroduction: Nerve deformation affects physiological function. Bands of Fontana are an optical manifestation of axonal undulations and may provide a structural indicator of nerve strain.
Methods: We developed an automated Fourier-based image processing method to quantify the periodicity of bands of Fontana both in bright field images and in axonal undulations in immunolabeled longitudinal sections.
Tissue Eng Part C Methods
June 2013
Recovery from peripheral nerve damage, especially for a transected nerve, is rarely complete, resulting in impaired motor function, sensory loss, and chronic pain with inappropriate autonomic responses that seriously impair quality of life. In consequence, strategies for enhancing peripheral nerve repair are of high clinical importance. Tension is a key determinant of neuronal growth and function.
View Article and Find Full Text PDFPurpose: The purpose of this study was to establish whether suture anchor capsulorrhaphy (SAC) is biomechanically superior to suture capsulorrhaphy (SC) in the management of recurrent anterior shoulder instability without a labral avulsion.
Methods: Twelve matched pairs of shoulders were randomized to either SC or SAC. Specimens were mounted in 60° of abduction and 90° of external rotation.
In skeletal muscle fibers, forces must be transmitted between the plasma membrane and the intracellular contractile lattice, and within this lattice between adjacent myofibrils. Based on their prevalence, biomechanical properties and localization, desmin and keratin intermediate filaments (IFs) are likely to participate in structural connectivity and force transmission. We examined the passive load-bearing response of single fibers from the extensor digitorum longus (EDL) muscles of young (3 months) and aged (10 months) wild-type, desmin-null, K19-null, and desmin/K19 double-null mice.
View Article and Find Full Text PDFObjectives: The purpose of this study is to determine if recent innovations in olecranon plates have any advantages in stabilizing osteoporotic olecranon fractures.
Methods: Five olecranon plates (Acumed, Synthes-SS, Synthes-Ti, US Implants/ITS, and Zimmer) were implanted to stabilize a simulated comminuted fracture pattern in 30 osteoporotic cadaveric elbows. Specimens were randomized by bone mineral density per dual-energy x-ray absorptiometry scan.