All-atom force fields are important for predicting thermodynamic, structural, and dynamic properties of RNA. In this paper, results are reported for thermodynamic integration calculations of free energy differences of duplex formation when CG pairs in the RNA duplexes r(CCGG)(2), r(GGCC)(2), r(GCGC)(2), and r(CGCG)(2) are replaced by isocytidine-isoguanosine (iCiG) pairs. Agreement with experiment was improved when ε/ζ, α/γ, β, and χ torsional parameters in the AMBER99 force field were revised on the basis of quantum mechanical calculations.
View Article and Find Full Text PDFAs the rate of functional RNA sequence discovery escalates, high-throughput techniques for reliable structural determination are becoming crucial for revealing the essential features of these RNAs in a timely fashion. Computational predictions of RNA secondary structure quickly generate reasonable models but suffer from several approximations, including overly simplified models and incomplete knowledge of significant interactions. Similar problems limit the accuracy of predictions for other self-folding polymers, including DNA and peptide nucleic acid (PNA).
View Article and Find Full Text PDF