Publications by authors named "James M Denegre"

Substance use disorders are heritable disorders characterized by compulsive drug use, the biological mechanisms for which remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference and sensation seeking, are predictive of drug-use phenotypes, thereby implicating shared genetic mechanisms. High-throughput behavioral screening in knockout (KO) mice allows efficient discovery of the function of genes.

View Article and Find Full Text PDF

Substance use disorders (SUDs) are heritable disorders characterized by compulsive drug use, but the biological mechanisms driving addiction remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference, and sensation seeking, are predictive of drug-use phenotypes, implicating shared genetic mechanisms. Because of this relationship, high-throughput behavioral screening of predictive phenotypes in knockout (KO) mice allows efficient discovery of genes likely to be involved in drug use.

View Article and Find Full Text PDF

Mutations in the gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new point mutation murine model, akin to its human counterpart disease-generating mutation.

View Article and Find Full Text PDF

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts.

View Article and Find Full Text PDF

Technology now exists for rapid screening of mutated laboratory mice to identify phenotypes associated with specific genetic mutations. Large repositories exist for spontaneous mutants and those induced by chemical mutagenesis, many of which have never been fully studied or comprehensively evaluated. To supplement these resources, a variety of techniques have been consolidated in an international effort to create mutations in all known protein coding genes in the mouse.

View Article and Find Full Text PDF

Visualization of important disease-driving tissues in their native morphological state, such as the pancreas, given its importance in glucose homeostasis and diabetes, provides critical insight into the etiology and progression of disease and our understanding of how cellular changes impact disease severity. Numerous challenges to maintaining tissue morphology exist when one attempts to preserve or to recreate such tissues for histological evaluation. We have overcome many of these challenges and have developed new methods for visualizing the whole murine pancreas and single islets of Langerhans in an effort to gain a better understanding of how islet cell volume, spatial distribution, and vascularization are altered as diabetes progresses.

View Article and Find Full Text PDF

Mitochondria are not only the major energy generators of the eukaryotic cell but they are also sources of signals that control gene expression and cell fate. While mitochondria are often asymmetrically distributed in early embryos, little is known about how they contribute to axial patterning. Here we review studies of mitochondrial distribution in metazoan eggs and embryos and the mechanisms of redox signaling, and speculate on the role that mitochondrial anisotropies might play in the developmental specification of cell fate during embryogenesis of sea urchins and other animals.

View Article and Find Full Text PDF

Luteinizing hormone (LH) induces maturational processes in oocyte-cumulus cell complexes (OCC) of preovulatory follicles that include both resumption of meiosis in the oocyte and expansion (mucification) of the cumulus oophorus. Both processes require activation of mitogen-activated protein kinase (MAPK) in granulosa cells. Here, it is reported that inhibition of MAPK activation prevented gonadotropin-stimulated resumption of meiosis as well as the rise in expression of two genes whose products are necessary for normal cumulus expansion, Has2 and Ptgs2.

View Article and Find Full Text PDF

Mutations within the CRB1 gene have been shown to cause human retinal diseases including retinitis pigmentosa and Leber congenital amaurosis. We have recently identified a mouse model, retinal degeneration 8 (rd8) with a single base deletion in the Crb1 gene. This mutation is predicted to cause a frame shift and premature stop codon which truncates the transmembrane and cytoplasmic domain of CRB1.

View Article and Find Full Text PDF

Cell polarity is manifest along the animal/vegetal axis in eggs of the frog, Xenopus laevis. Along this axis, maternal cytoplasmic components are asymmetrically distributed and are thought to underlie specification of distinct cell fates. To ascertain the molecular identities of such cytoplasmic components, we have used a monoclonal antibody that specifically stains the vegetal hemisphere of Xenopus eggs.

View Article and Find Full Text PDF

The oocyte plays a key role in follicular development. At all stages of follicular development, oocytes interact with surrounding granulosa cells and promote their differentiation into the types of cells that support further oocyte growth and developmental competence. These interactions suggest the existence of an oocyte-granulosa cell regulatory loop that includes both secreted proteins and cell surface receptors on both cell types.

View Article and Find Full Text PDF

As in many organisms, the first three cleavage planes of Xenopus laevis eggs form in a well-described mutually orthogonal geometry. The factors dictating this simple pattern have not been unambiguously identified. Here, we describe experiments, using static magnetic fields as a novel approach to perturb normal cleavage geometry, that provide new insight into these factors.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont0bk2gh4s37tgdncin1i7q4no9nuqpji): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once