Publications by authors named "James M Clinton"

Sleep deprivation was previously reported to alter microRNA (miRNA) levels in the brain; however, the direct effects of any miRNA on sleep have only been described recently. We determined miRNA 138 (miR-138), miRNA let-7b (let-7b), and miRNA 125a-5p (miR-125a) levels in different brain areas at the transitions between light and dark. In addition, we examined the extent to which inhibiting these miRNAs affects sleep and EEG measures.

View Article and Find Full Text PDF

Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73.

View Article and Find Full Text PDF

Interleukin (IL)-1β is involved in several brain functions, including sleep regulation. It promotes non-rapid eye movement (NREM) sleep via the IL-1 type I receptor. IL-1β/IL-1 receptor complex signaling requires adaptor proteins, e.

View Article and Find Full Text PDF

Symptoms commonly associated with sleep loss and chronic inflammation include sleepiness, fatigue, poor cognition, enhanced sensitivity to pain and kindling stimuli, excess sleep and increases in circulating levels of tumor necrosis factor α (TNF) in humans and brain levels of interleukin-1 β (IL1) and TNF in animals. Cytokines including IL1 and TNF partake in non-rapid eye movement sleep (NREMS) regulation under physiological and inflammatory conditions. Administration of exogenous IL1 or TNF mimics the accumulation of these cytokines occurring during sleep loss to the extent that it induces the aforementioned symptoms.

View Article and Find Full Text PDF

Electroencephalographic (EEG) δ waves during non-rapid eye movement sleep (NREMS) after sleep deprivation are enhanced. That observation eventually led to the use of EEG δ power as a parameter to model process S in the two-process model of sleep. It works remarkably well as a model parameter because it often co-varies with sleep duration and intensity.

View Article and Find Full Text PDF

Cytokines such as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) play a role in sleep regulation in health and disease. TNFα or IL1β injection enhances non-rapid eye movement sleep. Inhibition of TNFα or IL1β reduces spontaneous sleep.

View Article and Find Full Text PDF

MicroRNA (miRNA) levels in brain are altered by sleep deprivation; however, the direct effects of any miRNA on sleep have not heretofore been described. We report herein that intracerebroventricular application of a miRNA-132 mimetic (preMIR-132) decreased duration of non-rapid-eye-movement sleep (NREMS) while simultaneously increasing duration of rapid eye movement sleep (REMS) during the light phase. Further, preMIR-132 decreased electroencephalographic (EEG) slow-wave activity (SWA) during NREMS, an index of sleep intensity.

View Article and Find Full Text PDF