Evidence for a stochastic gravitational wave (GW) background, plausibly originating from the merger of supermassive black holes (SMBHs), is accumulating with observations from pulsar timing arrays. An outstanding question is how inspiraling SMBHs get past the "final parsec" of separation, where they have a tendency to stall before GW emission alone can make the binary coalesce. We argue that dynamical friction from the dark matter (DM) spike surrounding the black holes is sufficient to resolve this puzzle, if the DM has a self-interaction cross section of order cm^{2}/g.
View Article and Find Full Text PDFNeutrino emission in coincidence with gamma rays has been observed from the blazar TXS 0506+056 by the IceCube telescope. Neutrinos from the blazar had to pass through a dense spike of dark matter (DM) surrounding the central black hole. The observation of such a neutrino implies new upper bounds on the neutrino-DM scattering cross section as a function of DM mass.
View Article and Find Full Text PDFDetection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.
View Article and Find Full Text PDFElectroweak baryogenesis is severely challenged in its traditional settings: the minimal supersymmetric standard model, and in more general two Higgs doublet models. Fine tuning of parameters is required, or large couplings leading to a Landau pole at scales just above the new physics introduced. The situation is somewhat better in models with a singlet scalar coupling to the Higgs so as to give a strongly first-order phase transition due to a tree-level barrier, but even in this case no UV complete models had been demonstrated to give successful baryogenesis.
View Article and Find Full Text PDF