Publications by authors named "James M Briggs"

The sarco/endoplasmic reticulum Ca-ATPase (SERCA) transports two Ca ions per ATP hydrolyzed from the cytoplasm to the lumen. However, how the ATP hydrolysis remotely drives the Ca transport is unclear. In the SERCA1a crystal structures, the ATP hydrolysis is accompanied by the notably increasing tilting angle of the central core (CC) and the Ca transport, and the CC tilting angle dramatically decreases in the E2 to E1 transition.

View Article and Find Full Text PDF

Quantum mechanical second order Møller-Plesset (MP2) perturbation theory and density functional theory (DFT) Becke, 3-parameter, Lee-Yang-Parr (B3LYP) and Minnesota 2006 local functional (M06L) calculations were performed to optimize structure of nirmatrelvir and compute the Merz-Kollman electrostatic potential (MK ESP), natural population analysis (NPA), Hirshfeld, charge model 5 (CM5), and mulliken partial charges. The mulliken partial charge distribution of nirmatrelvir exhibits a poor correlation with the MK ESP charges in MP2, B3LYP, and M06L calculations respectively. The NPA, Hirshfeld, and CM5 partial charge scheme of nirmatrelvir indicate a reasonable correlation with MK ESP charge assignments in B3LYP and M06L calculations.

View Article and Find Full Text PDF

Intermolecular interaction between key residue N501 of the epitope on SARS-CoV-2 RBD and screening antibody B38 was studied using the QM/MM and QM approach. The QM/MM optimized geometry shows that angle X-H---Y is 165° for O-H---O between mAb light chain S30 and RBD N501. High level MP2 calculations indicated the interaction between RBD N501 and S30 of B38 Fab light chain provide a relatively strong attractive force of - 3.

View Article and Find Full Text PDF

Allosteric activation and silencing of leukocyte β2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg reveals two mutually coupled events for the αXβ2 ligand-binding domain-the αX I-domain-corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg-binding site establish long-range couplings, leading to both pH- and Mg-occupancy-dependent biphasic stability change in the αX I-domain fold.

View Article and Find Full Text PDF
Article Synopsis
  • Antibodies and Fc fusion proteins are becoming important pharmaceuticals, requiring efficient methods for measuring product concentrations during production.
  • A new, fast (under 30 seconds) assay using fluorescence emission simplifies the detection of Fc-containing samples, making it suitable for real-time measurements and monitoring cell cultures.
  • The assay demonstrated effectiveness at detecting low concentrations of adalimumab biosimilars in complex cultures while remaining unaffected by cell debris, suggesting its practicality in various lab settings.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer. PDACs harbor oncogenic mutations in the gene, and ongoing efforts to directly target its mutant protein product to inhibit tumor growth are a priority not only in pancreatic cancer but in other malignancies such as lung and colorectal cancers where is also commonly mutated. An alternative strategy to directly targeting KRAS is to identify and target druggable receptors involved in dysregulated cancer hallmarks downstream of KRAS dysregulation.

View Article and Find Full Text PDF

Frequent mutations in the Bcl-2 anti-apoptotic protein are often implicated in diffuse large B-cell lymphoma (DLBCL), a disease profoundly resistant to drugs. Bcl-2-competitive inhibitors, "BH3 mimetics," activate apoptosis by interfering with the interactions between pro-apoptotic BH3 domains and the hydrophobic groove of Bcl-2. The aim of our research is to determine the potential of DLBCL-linked N11Y mutation to facilitate resistance against a "BH3 mimetic" using molecular dynamics simulation.

View Article and Find Full Text PDF

The identification of RNA secondary structure has been an important tool for the characterization of nucleic acids. Computational structure prediction has been an effective approach toward this end, but improvement of established methods is often slow and reliant on redundant methodology. Here we present a novel consensus scoring approach, created to incorporate inputs from an array of established methods with the goal of producing outputs that contain mutual structures from these programs.

View Article and Find Full Text PDF

Unlabelled: Rho-activated kinases (ROCKs) regulate many cellular functions such as proliferation, migration, and smooth muscle contractility, but they are also associated with pathogenesis of many human diseases such as heart failure and hypertension. We used phage display libraries to identify inhibitory polypeptides that bind to the ROCK1 catalytic domain, but do not compete with the ATP-binding pocket, by screening in the presence of high ATP concentrations (1 mM). Peptide7, a promising ROCK inhibitory peptide for both ROCK isoforms, measured at 1.

View Article and Find Full Text PDF

Quorum sensing is a cell to cell signaling mechanism that enables them to coordinate their behaviors in a density-dependent manner mediated by small diffusible signaling molecules, which can control the virulence and biofilm gene expression in many Gram-negative and positive bacteria. N-acyl homoserine lactone acylase PvdQ from human opportunistic pathogen Pseudomonas aeruginosa is a quorum-quenching enzyme that can hydrolyze the amide bond of the quorum signaling N-acyl homoserine lactones (AHLs) thereby degrading the signaling molecules, turning off the biofilm phenotype and resulting in a reduction of bacterial virulence. Previous studies demonstrated that PvdQ has different preferences for N-acyl substrates with different acyl chain lengths and substituents.

View Article and Find Full Text PDF

Experimental results for the antibody known as immunoglobulin G - IgG interacting with phenobarbital were obtained via atomic force microscopy (AFM) and thereafter investigated using computer simulation modeling tools. Using molecular dynamics simulation and docking calculations, the energetically stable configurations of an immobilized antibody over a silicon surface were searched. Six stable configurations of the immobilized antibody over the silicon nitride surface covered by linker molecules were found.

View Article and Find Full Text PDF

The oncogenic epidermal growth factor receptor (EGFR) is commonly overexpressed in solid cancers. The tyrosine kinase activity of EGFR has been a major therapeutic target for cancer; however, the efficacy of EGFR tyrosine kinase inhibitors to treat cancers has been challenged by innate and acquired resistance at the clinic. Accumulating evidence suggests that EGFR possesses kinase-independent pro-survival functions, and that cancer cells are more vulnerable to reduction of EGFR protein than to inhibition of its kinase activity.

View Article and Find Full Text PDF

Cholera toxin (CT) is an AB-type protein toxin that contains a catalytic A1 subunit, an A2 linker, and a cell-binding B homopentamer. The CT holotoxin is released into the extracellular environment, but CTA1 attacks a target within the cytosol of a host cell. We recently reported that grape extract confers substantial resistance to CT.

View Article and Find Full Text PDF

The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a tumor suppressor phosphatase that has recently been found to be frequently mutated in patients with endometriosis, endometrial cancer and ovarian cancer. Here, we present the first computational analysis of 13 somatic missense PTEN mutations associated with these phenotypes. We found that a majority of the mutations are associated in conserved positions within the active site and are clustered within the signature motif, which contain residues that play a crucial role in loop conformation and are essential for catalysis.

View Article and Find Full Text PDF

Mutations in the translocated BCL2 gene are often detected in diffuse large B-cell lymphomas (DLBCLs), indicating both their significance and pervasiveness. Large series genome sequencing of more than 200 DLBCLs has identified frequent BCL2 mutations clustered in the exons coding for the BH4 domain and the folded loop domain (FLD) of the protein. However, BCL2 mutations are mostly contemplated to represent bystander events with negligible functional impact on the pathogenesis of DLBCL.

View Article and Find Full Text PDF

The biophysical chemistry of macromolecular complexes confer their functional characteristics. We investigate the mechanisms that make the AB5 holotoxin of Vibrio cholerae (CT) a significantly more pathogenic molecule than the enterotoxin of Escherichia coli (LT) with which it shares 88% similarity and whose structure is homologous with a backbone RMSD of 0.84 Å and imposes its deleterious effects though the same process to constitutively ADP-ribosylate adenylate cyclase.

View Article and Find Full Text PDF

Rho-associated kinase, or ROCK, is an important mediator of ventricular remodeling in cardiac hypertrophy. It has a kinase catalytic domain, a coiled-coil domain and a Pleckstrin-Homology domain (PH domain) with a C1 domain insert. The C-terminal region including the PH domain and C1 domain insert is involved in an autoregulatory role for ROCK.

View Article and Find Full Text PDF

The lactonase enzyme (AiiA) produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1) signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions.

View Article and Find Full Text PDF

The immobilization of enzymes on atomic force microscope tip (AFM tip) surface is a crucial step in the development of nanobiosensors to be used in detection process. In this work, an atomistic modeling of the attachment of the acetyl coenzyme A carboxylase (ACC enzyme) on a functionalized AFM tip surface is proposed. Using electrostatic considerations, suitable enzyme-surface orientations with the active sites of the ACC enzyme available for interactions with bulk molecules were found.

View Article and Find Full Text PDF

The nicotinic acetylcholine receptor exhibits multiple conformational states, resting (channel closed), active (channel open) and desensitized (channel closed). The resting state may be distinguished from the active and desensitized states by the orientation of loop C in the extracellular ligand binding domain (LBD). Homology modeling was used to generate structures of the Torpedo californica α2βδγ nAChR that initially represent the resting state (loop C open) and the desensitized state (loop C closed).

View Article and Find Full Text PDF

Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT(2C) receptor (5-HT(2C)R) is essential in normal physiology, whereas aberrant 5-HT(2C)R function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT(2C)R interacts with specific protein partners, but the impact of such interactions on 5-HT(2C)R function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT(2C)R and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT(2C)R-mediated biology but not that of the closely homologous 5-HT(2A)R.

View Article and Find Full Text PDF

A pharmacophore-based virtual screening method was developed and validated for use in predicting the function of a novel protein in terms of small metabolite binding. Five test cases were used for the validation study which spanned two different folds, four superfamilies, and three enzyme classes. Binding sites were predicted using a combination of two methods (CASTp and THEMATICS).

View Article and Find Full Text PDF

Hepatitis C virus (HCV) NS3 protease is the key enzyme for its maturation. Three hypotheses have been advanced in the literature to demonstrate the mechanism of the activation of the HCV NS3 protease. A virus-encoded protein NS4A and substrate are proposed to be involved in the activation of the HCV NS3 protease.

View Article and Find Full Text PDF

Metallonucleases conduct metal-dependent nucleic acid hydrolysis. While metal ions serve in multiple mechanistic capacities in these enzymes, precisely how the attacking water is activated remains unclear for those lacking an obvious general base. All arguments hinge on appropriate pK(a)s for active site moieties very close to this species, and measurement of the pK(a) of a specific water molecule is difficult to access experimentally.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (Stat3) is involved in aberrant growth and survival signals in malignant tumor cells and is a validated target for anticancer drug design. We are targeting its SH2 domain to prevent docking to cytokine and growth factor receptors and subsequent signaling. The amino acids of our lead phosphopeptide, Ac-pTyr-Leu-Pro-Gln-Thr-Val-NH(2), were replaced with conformationally constrained mimics.

View Article and Find Full Text PDF