Aspartimidylation is a post-translational modification found in multiple families of ribosomally synthesized and post-translationally modified peptides (RiPPs). We recently reported on the imiditides, a new RiPP family in which aspartimidylation is the class-defining modification. Imiditide biosynthetic gene clusters encode a precursor protein and a methyltransferase that methylates a specific Asp residue, converting it to aspartimide.
View Article and Find Full Text PDFThe ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily of natural products includes many examples of cyclic peptides with diverse macrocyclization chemistries. The graspetides, one family of macrocyclized RiPPs, harbor side chain-side chain ester or amide linkages. We recently reported the structure and biosynthesis of the graspetide pre-fuscimiditide, a 22-amino-acid (aa) peptide with two ester cross-links forming a stem-loop structure.
View Article and Find Full Text PDFThe development of new antimicrobial agents effective against Gram-negative bacteria remains a major challenge in drug discovery. The lasso peptide cloacaenodin has potent antimicrobial activity against multiple strains in the genus, one of the ESKAPE pathogens. Here, we show that cloacaenodin uses a previously uncharacterized TonB-dependent transporter, which we name CloU, to cross the outer membrane (OM) of susceptible bacteria.
View Article and Find Full Text PDFCovering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide.
View Article and Find Full Text PDFThrough genome mining efforts, two lasso peptide biosynthetic gene clusters (BGCs) within two different species of , a genus that contains pathogenic organisms that can infect patients with cystic fibrosis, were discovered. Using gene-refactored BGCs in , these lasso peptides, which were named achromonodin-1 and achromonodin-2, were heterologously expressed. Achromonodin-1 is naturally encoded by certain isolates from the sputum of patients with cystic fibrosis.
View Article and Find Full Text PDFGraspetides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that exhibit an impressive diversity in patterns of side chain-to-side chain ω-ester or ω-amide linkages. Recent studies have uncovered a significant portion of graspetides to contain an additional post-translational modification involving aspartimidylation catalyzed by an -methyltransferase, predominantly found in the genomes of actinomycetota. Here, we present a comprehensive bioinformatic analysis focused on graspetides harboring aspartimide, for which we propose the name graspimiditides.
View Article and Find Full Text PDFGraspetides are a class of RiPPs (ribosomally synthesized and post-translationally modified peptides) defined by the presence of ester or amide side chain-side chain linkages resulting in peptide macrocycles. The graspetide name comes from the ATP-grasp enzymes that install the side chain-side chain linkages. This review covers the early, activity-based isolation of the first graspetides, marinostatins and microviridins, as well as the key genomics-driven experiments that established graspetide as RiPPs.
View Article and Find Full Text PDFRibosomally synthesized and post-translationally modified peptides (RiPPs) are a large and diverse class of natural products of ribosomal origin. In the past decade, various sophisticated machine-learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Here, we show that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds, providing a complementary approach for novel RiPP discovery.
View Article and Find Full Text PDFRibosomally synthesized and post-translationally modified peptides (RiPPs) are a fascinating class of natural products of ribosomal origins. In the past decade, various sophisticated machine learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Instead, we argue that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds for novel RiPP discovery.
View Article and Find Full Text PDFThe complex (Bcc) is a group of bacteria including opportunistic human pathogens. Immunocompromised individuals and cystic fibrosis patients are especially vulnerable to serious infections by these bacteria, motivating the search for compounds with antimicrobial activity against the Bcc. Ubonodin is a lasso peptide with promising activity against Bcc species, working by inhibiting RNA polymerase in susceptible bacteria.
View Article and Find Full Text PDFBiochemistry
February 2023
Aspartimides are notorious as undesired side products in solid-phase peptide synthesis and in pharmaceutical formulations. However, we have discovered several ribosomally synthesized and post-translationally modified peptides (RiPPs) in which aspartimide is installed intentionally via enzymatic activity of protein l-isoaspartyl methyltransferase (PIMT) homologues. In the case of the lasso peptide lihuanodin, the methyltransferase LihM recognizes the lassoed substrate pre-lihuanodin, specifically methylating the side chain of an l-Asp residue in the ring portion of the lasso peptide.
View Article and Find Full Text PDFLasso peptides are a subclass of ribosomally synthesized and post-translationally modified peptides with a slipknot conformation. With superior thermal stability, protease resistance, and antimicrobial activity, lasso peptides are promising candidates for bioengineering and pharmaceutical applications. To enable high-throughput computational prediction and design of lasso peptides, we developed a software, LassoHTP, for automatic lasso peptide structure construction and modeling.
View Article and Find Full Text PDFUsing genome mining and heterologous expression, we report the discovery and production of a new antimicrobial lasso peptide from species related to the complex. Using NMR and mass spectrometric analysis, we show that this lasso peptide, named cloacaenodin, employs a threaded lasso fold which imparts proteolytic resistance that its unthreaded counterpart lacks. Cloacaenodin has selective, low micromolar, antimicrobial activity against species related to the complex, including species implicated in nosocomial infections and against clinical isolates of carbapenem-resistant .
View Article and Find Full Text PDFSeveral classes of ribosomally synthesized and post-translationally modified peptides (RiPPs) are composed of multiple macrocycles. The enzymes that assemble these macrocycles must surmount the challenge of installing a single specific set of linkages out of dozens of distinct possibilities. One class of RiPPs that includes multiple macrocycles are the graspetides, named after the ATP-grasp enzymes that install ester or amide linkages between pairs of nucleophilic and electrophilic side chains.
View Article and Find Full Text PDFMicroviridins and other ω-ester-linked peptides, collectively known as graspetides, are characterized by side-chain-side-chain linkages installed by ATP-grasp enzymes. Here we report the discovery of a family of graspetides, the gene clusters of which also encode an O-methyltransferase with homology to the protein repair catalyst protein L-isoaspartyl methyltransferase. Using heterologous expression, we produced fuscimiditide, a ribosomally synthesized and post-translationally modified peptide (RiPP).
View Article and Find Full Text PDFNew antibiotics are needed as bacterial infections continue to be a leading cause of death, but efforts to develop compounds with promising antibacterial activity are hindered by a poor understanding of─and limited strategies for elucidating─their modes of action. We recently discovered a novel lasso peptide, ubonodin, that is active against opportunistic human lung pathogens from the complex (Bcc). Ubonodin inhibits RNA polymerase, but only select strains were susceptible, indicating that having a conserved cellular target does not guarantee activity.
View Article and Find Full Text PDFFlavohemoglobins, which are widely distributed in prokaryotes and eukaryotes, play key roles in oxygen (O) transport and nitric oxide (·NO) defense. Hmp is the flavohemoglobin of , and here we report that the translational fusion of Hmp to the N-terminus of heterologous proteins increases their expression in . The effect required the fusion of the proteins, and was independent of both the O-binding and catalytic activity of Hmp.
View Article and Find Full Text PDFRibosomally synthesized and post-translationally modified peptides (RiPPs) make up a rapidly growing superfamily of natural products. RiPPs exhibit an extraordinary range of structures, but they all begin as gene-encoded precursor peptides that are linear chains of amino acids produced by ribosomes. Given the gene-encoded nature of RiPP precursor peptides, the toolbox of protein engineering can be directly applied to these precursors.
View Article and Find Full Text PDFThe lasso peptide benenodin-1, a naturally occurring and bacterially produced [1]rotaxane, undergoes a reversible zip tie-like motion under heat activation, in which a peptidic wheel stepwise translates along a molecular thread in a cascade of "tail/loop pulling" equilibria. Conformational and structural analyses of four translational isomers, in solution and in the gas phase, reveal that the equilibrium distribution is controlled by mechanical and non-covalent forces within the lasso peptide. Furthermore, each dynamic pulling step is accompanied by a major restructuring of the intramolecular hydrogen bonding network between wheel and thread, which affects the peptide's physico-chemical properties.
View Article and Find Full Text PDFMechanically interlocked molecules (MIMs), such as rotaxanes and catenanes, have captured the attention of chemists both from a synthetic perspective and because of their role as simple prototypes of molecular machines. Although examples exist in nature, most synthetic MIMs are made from artificial building blocks and assembled in organic solvents. The synthesis of MIMs from natural biomolecules remains highly challenging.
View Article and Find Full Text PDFLasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by their threaded structure. Besides the class-defining isopeptide bond, other post-translational modifications (PTMs) that further tailor lasso peptides have been previously reported. Using genome mining tools, we identified a subset of lasso peptide biosynthetic gene clusters (BGCs) that are colocalized with genes encoding protein l-isoaspartyl methyltransferase (PIMT) homologues.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
June 2021
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities.
View Article and Find Full Text PDFThe tree-like pattern of the mammary epithelium is formed during puberty through a process known as branching morphogenesis. Although mammary epithelial branching is stochastic and generates an epithelial tree with a random pattern of branches, the global orientation of the developing epithelium is predictably biased along the long axis of the gland. Here, we combine analysis of pubertal mouse mammary glands, a three-dimensional (3D)-printed engineered tissue model, and computational models of morphogenesis to investigate the origin and the dynamics of the global bias in epithelial orientation during pubertal mammary development.
View Article and Find Full Text PDFAntibiotic resistance poses a serious threat to global health. To reinforce the anti-infective arsenal, many novel therapeutic strategies to fight bacterial infections are being explored. Among them, anti-virulence therapies, which target pathways important for virulence, have attracted much attention.
View Article and Find Full Text PDF